BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32098317)

  • 21. The Current Research of Combining Multi-Modal Brain-Computer Interfaces With Virtual Reality.
    Wen D; Liang B; Zhou Y; Chen H; Jung TP
    IEEE J Biomed Health Inform; 2021 Sep; 25(9):3278-3287. PubMed ID: 33373308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Desktop VR Is Better Than Non-ambulatory HMD VR for Spatial Learning.
    Srivastava P; Rimzhim A; Vijay P; Singh S; Chandra S
    Front Robot AI; 2019; 6():50. PubMed ID: 33501066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hiding Assistive Robots During Training in Immersive VR Does Not Affect Users' Motivation, Presence, Embodiment, Performance, Nor Visual Attention.
    Wenk N; Jordi MV; Buetler KA; Marchal-Crespo L
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():390-399. PubMed ID: 35085087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visuomotor adaptation in head-mounted virtual reality versus conventional training.
    Anglin JM; Sugiyama T; Liew SL
    Sci Rep; 2017 Apr; 7():45469. PubMed ID: 28374808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Virtual Reality as a Therapy Tool for Walking Activities in Pediatric Neurorehabilitation: Usability and User Experience Evaluation.
    Ammann-Reiffer C; Kläy A; Keller U
    JMIR Serious Games; 2022 Jul; 10(3):e38509. PubMed ID: 35834316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immersive virtual reality health games: a narrative review of game design.
    Tao G; Garrett B; Taverner T; Cordingley E; Sun C
    J Neuroeng Rehabil; 2021 Feb; 18(1):31. PubMed ID: 33573684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of viewing mode on pathfinding in immersive Virtual Reality.
    White PJ; Byagowi A; Moussavi Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4619-22. PubMed ID: 26737323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation.
    Hirota M; Kanda H; Endo T; Miyoshi T; Miyagawa S; Hirohara Y; Yamaguchi T; Saika M; Morimoto T; Fujikado T
    Ergonomics; 2019 Jun; 62(6):759-766. PubMed ID: 30773103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurofeedback training with virtual reality for inattention and impulsiveness.
    Cho BH; Kim S; Shin DI; Lee JH; Lee SM; Kim IY; Kim SI
    Cyberpsychol Behav; 2004 Oct; 7(5):519-26. PubMed ID: 15667046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tolerance of immersive head-mounted virtual reality among older nursing home residents.
    Rmadi H; Maillot P; Artico R; Baudouin E; Hanneton S; Dietrich G; Duron E
    Front Public Health; 2023; 11():1163484. PubMed ID: 37538272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Usability Comparisons of Head-Mounted vs. Stereoscopic Desktop Displays in a Virtual Reality Environment with Pain Patients.
    Tong X; Gromala D; Gupta D; Squire P
    Stud Health Technol Inform; 2016; 220():424-31. PubMed ID: 27046617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Virtual reality-enhanced walking in people post-stroke: effect of optic flow speed and level of immersion on the gait biomechanics.
    De Keersmaecker E; Van Bladel A; Zaccardi S; Lefeber N; Rodriguez-Guerrero C; Kerckhofs E; Jansen B; Swinnen E
    J Neuroeng Rehabil; 2023 Sep; 20(1):124. PubMed ID: 37749566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Older Adults With Cognitive and/or Physical Impairments Can Benefit From Immersive Virtual Reality Experiences: A Feasibility Study.
    Appel L; Appel E; Bogler O; Wiseman M; Cohen L; Ein N; Abrams HB; Campos JL
    Front Med (Lausanne); 2019; 6():329. PubMed ID: 32010701
    [No Abstract]   [Full Text] [Related]  

  • 34. A multi-modal modified feedback self-paced BCI to control the gait of an avatar.
    Alchalabi B; Faubert J; Labbé DR
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33711832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials.
    Said RR; Heyat MBB; Song K; Tian C; Wu Z
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feasibility and user-experience of virtual reality in neuropsychological assessment following stroke.
    Spreij LA; Visser-Meily JMA; Sibbel J; Gosselt IK; Nijboer TCW
    Neuropsychol Rehabil; 2022 May; 32(4):499-519. PubMed ID: 33138703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Applications of Head-Mounted Displays for Virtual Reality in Adult Physical Rehabilitation: A Scoping Review.
    Saldana D; Neureither M; Schmiesing A; Jahng E; Kysh L; Roll SC; Liew SL
    Am J Occup Ther; 2020; 74(5):7405205060p1-7405205060p15. PubMed ID: 32804624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Comparison between BCI Simulation and Neurofeedback for Forward/Backward Navigation in Virtual Reality.
    Alchalabi B; Faubert J
    Comput Intell Neurosci; 2019; 2019():2503431. PubMed ID: 31687005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Embodiment Comfort Levels During Motor Imagery Training Combined With Immersive Virtual Reality in a Spinal Cord Injury Patient.
    Pais-Vieira C; Gaspar P; Matos D; Alves LP; da Cruz BM; Azevedo MJ; Gago M; Poleri T; Perrotta A; Pais-Vieira M
    Front Hum Neurosci; 2022; 16():909112. PubMed ID: 35669203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The short-term effects of head-mounted virtual-reality on neuropathic pain intensity in people with spinal cord injury pain: a randomised cross-over pilot study.
    Austin PD; Craig A; Middleton JW; Tran Y; Costa DSJ; Wrigley PJ; Siddall PJ
    Spinal Cord; 2021 Jul; 59(7):738-746. PubMed ID: 33077900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.