These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 32098369)
1. Investigation of a Direct Interaction between miR4749 and the Tumor Suppressor p53 by Fluorescence, FRET and Molecular Modeling. Bizzarri AR; Cannistraro S Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32098369 [TBL] [Abstract][Full Text] [Related]
2. Interaction between miR4749 and Human Serum Albumin as Revealed by Fluorescence, FRET, Atomic Force Spectroscopy and Computational Modelling. Botti V; Marrone S; Cannistraro S; Bizzarri AR Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163220 [TBL] [Abstract][Full Text] [Related]
3. Probing direct interaction of oncomiR-21-3p with the tumor suppressor p53 by fluorescence, FRET and atomic force spectroscopy. Moscetti I; Cannistraro S; Bizzarri AR Arch Biochem Biophys; 2019 Aug; 671():35-41. PubMed ID: 31181181 [TBL] [Abstract][Full Text] [Related]
4. Interaction of the anticancer p28 peptide with p53-DBD as studied by fluorescence, FRET, docking and MD simulations. Bizzarri AR; Moscetti I; Cannistraro S Biochim Biophys Acta Gen Subj; 2019 Feb; 1863(2):342-350. PubMed ID: 30419285 [TBL] [Abstract][Full Text] [Related]
5. Interaction of miR-155 with Human Serum Albumin: An Atomic Force Spectroscopy, Fluorescence, FRET, and Computational Modelling Evidence. Botti V; Cannistraro S; Bizzarri AR Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142640 [TBL] [Abstract][Full Text] [Related]
6. R248Q mutation--Beyond p53-DNA binding. Ng JW; Lama D; Lukman S; Lane DP; Verma CS; Sim AY Proteins; 2015 Dec; 83(12):2240-50. PubMed ID: 26442703 [TBL] [Abstract][Full Text] [Related]
7. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies. Signorelli S; Santini S; Yamada T; Bizzarri AR; Beattie CW; Cannistraro S Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):910-921. PubMed ID: 28126403 [TBL] [Abstract][Full Text] [Related]
8. Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin. De Grandis V; Bizzarri AR; Cannistraro S J Mol Recognit; 2007; 20(4):215-26. PubMed ID: 17703463 [TBL] [Abstract][Full Text] [Related]
9. The p73 DNA binding domain displays enhanced stability relative to its homologue, the tumor suppressor p53, and exhibits cooperative DNA binding. Patel S; Bui TT; Drake AF; Fraternali F; Nikolova PV Biochemistry; 2008 Mar; 47(10):3235-44. PubMed ID: 18260640 [TBL] [Abstract][Full Text] [Related]
10. Dissociation Pathways of the p53 DNA Binding Domain from DNA and Critical Roles of Key Residues Elucidated by dPaCS-MD/MSM. Sobeh MM; Kitao A J Chem Inf Model; 2022 Mar; 62(5):1294-1307. PubMed ID: 35234033 [TBL] [Abstract][Full Text] [Related]
11. Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain. Krois AS; Dyson HJ; Wright PE Proc Natl Acad Sci U S A; 2018 Nov; 115(48):E11302-E11310. PubMed ID: 30420502 [TBL] [Abstract][Full Text] [Related]
12. Selective binding of pyrene in subdomain IB of human serum albumin: Combining energy transfer spectroscopy and molecular modelling to understand protein binding flexibility. Ling I; Taha M; Al-Sharji NA; Abou-Zied OK Spectrochim Acta A Mol Biomol Spectrosc; 2018 Apr; 194():36-44. PubMed ID: 29316482 [TBL] [Abstract][Full Text] [Related]
13. Interaction between p53 N terminus and core domain regulates specific and nonspecific DNA binding. He F; Borcherds W; Song T; Wei X; Das M; Chen L; Daughdrill GW; Chen J Proc Natl Acad Sci U S A; 2019 Apr; 116(18):8859-8868. PubMed ID: 30988205 [TBL] [Abstract][Full Text] [Related]
14. Raman Evidence of p53-DBD Disorder Decrease upon Interaction with the Anticancer Protein Azurin. Signorelli S; Cannistraro S; Bizzarri AR Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31238511 [TBL] [Abstract][Full Text] [Related]
15. Characterization of an Hsp90-Independent Interaction between Co-Chaperone p23 and Transcription Factor p53. Wu H; Hyun J; Martinez-Yamout MA; Park SJ; Dyson HJ Biochemistry; 2018 Feb; 57(6):935-944. PubMed ID: 29334217 [TBL] [Abstract][Full Text] [Related]
16. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620 [TBL] [Abstract][Full Text] [Related]
17. Multiple conformations of full-length p53 detected with single-molecule fluorescence resonance energy transfer. Huang F; Rajagopalan S; Settanni G; Marsh RJ; Armoogum DA; Nicolaou N; Bain AJ; Lerner E; Haas E; Ying L; Fersht AR Proc Natl Acad Sci U S A; 2009 Dec; 106(49):20758-63. PubMed ID: 19933326 [TBL] [Abstract][Full Text] [Related]
18. Oligomerization of the tetramerization domain of p53 probed by two- and three-color single-molecule FRET. Chung HS; Meng F; Kim JY; McHale K; Gopich IV; Louis JM Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6812-E6821. PubMed ID: 28760960 [TBL] [Abstract][Full Text] [Related]
19. Mapping the structural and dynamical features of multiple p53 DNA binding domains: insights into loop 1 intrinsic dynamics. Lukman S; Lane DP; Verma CS PLoS One; 2013; 8(11):e80221. PubMed ID: 24324553 [TBL] [Abstract][Full Text] [Related]
20. Microsecond molecular dynamics simulations reveal the allosteric regulatory mechanism of p53 R249S mutation in p53-associated liver cancer. Liu X; Tian W; Cheng J; Li D; Liu T; Zhang L Comput Biol Chem; 2020 Feb; 84():107194. PubMed ID: 31881526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]