BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32098542)

  • 1. Effects of Preconditioning Local Vibrations on Subsequent Plantar Skin Blood Flow Response to Walking.
    Zhu X; Wu FL; Zhu T; Liao F; Ren Y; Jan YK
    Int J Low Extrem Wounds; 2021 Jun; 20(2):143-149. PubMed ID: 32098542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Local Vibrations on Plantar Skin Blood Flow Responses During Weight-bearing Standing in Healthy Volunteers.
    Zhu T; Wang Y; Wang X; Liao F; Liu Y; Jan YK
    Wound Manag Prev; 2020 Aug; 66(8):7-14. PubMed ID: 32732438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral analysis of blood flow oscillations to assess the plantar skin blood flow regulation in response to preconditioning local vibrations.
    Zhu X; Zhang K; He L; Liao F; Ren Y; Jan YK
    Biorheology; 2021; 58(1-2):39-49. PubMed ID: 33896803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of different accumulated pressure-time integral stimuli on plantar blood flow in people with diabetes mellitus.
    Duan Y; Ren W; Xu L; Ye W; Jan YK; Pu F
    BMC Musculoskelet Disord; 2021 Jun; 22(1):554. PubMed ID: 34144680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet-based analysis of plantar skin blood flow response to different frequencies of local vibration.
    Zhu T; Wang Y; Yang J; Liao F; Wang S; Jan YK
    Physiol Meas; 2020 Mar; 41(2):025004. PubMed ID: 31962305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Local Vibration With Different Intermittent Durations on Skin Blood Flow Responses in Diabetic People.
    Ren W; Pu F; Luan H; Duan Y; Su H; Fan Y; Jan YK
    Front Bioeng Biotechnol; 2019; 7():310. PubMed ID: 31781553
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of Different Local Vibration Frequencies on the Multiscale Regularity of Plantar Skin Blood Flow.
    Liao F; Zhang K; Zhou L; Chen Y; Elliott J; Jan YK
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Microcirculation Characteristics of Plantar Skin Under Metatarsal Head of Human Foot in Response to Life-Like Pressure Stimulus.
    Zhang Z; Chen WM; Yang XG; Zhang X; Wang X; Huang J; Zhang C; Geng X; Ma X
    Microcirculation; 2024 Jul; 31(5):e12860. PubMed ID: 38837938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear dynamics of skin blood flow response to mechanical and thermal stresses in the plantar foot of diabetics with peripheral neuropathy.
    Liao F; Jan YK
    Clin Hemorheol Microcirc; 2017; 66(3):197-210. PubMed ID: 28482622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in skin blood flow oscillations between the plantar and dorsal foot in people with diabetes mellitus and peripheral neuropathy.
    Jan YK; Liao F; Cheing GLY; Pu F; Ren W; Choi HMC
    Microvasc Res; 2019 Mar; 122():45-51. PubMed ID: 30414870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of walking speeds and durations on plantar skin blood flow responses.
    Wu FL; Wang WT; Liao F; Elliott J; Jain S; Jan YK
    Microvasc Res; 2020 Mar; 128():103936. PubMed ID: 31670165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microvascular Control Mechanism of the Plantar Foot in Response to Different Walking Speeds and Durations: Implication for the Prevention of Foot Ulcers.
    Wu FL; Wang WT; Liao F; Liu Y; Li J; Jan YK
    Int J Low Extrem Wounds; 2021 Dec; 20(4):327-336. PubMed ID: 32326799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Vibration on Alleviating Foot Pressure-Induced Ischemia under Occlusive Compression.
    Ren W; Zhang M; Liu H; Jan YK; Pu F; Fan Y
    J Healthc Eng; 2021; 2021():6208499. PubMed ID: 34733455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Multiscale Entropy in Assessing Plantar Skin Blood Flow Dynamics in Diabetics with Peripheral Neuropathy.
    Liao F; Cheing GLY; Ren W; Jain S; Jan YK
    Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using reactive hyperemia to investigate the effect of cupping sizes of cupping therapy on skin blood flow responses.
    He X; Zhang X; Liao F; He L; Xu X; Jan YK
    J Back Musculoskelet Rehabil; 2021; 34(2):327-333. PubMed ID: 33459698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of 30 Hz vs. 50 Hz passive vibration and duration of vibration on skin blood flow in the arm.
    Maloney-Hinds C; Petrofsky JS; Zimmerman G
    Med Sci Monit; 2008 Mar; 14(3):CR112-6. PubMed ID: 18301353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of whole body vibration on skin blood flow and nitric oxide production.
    Johnson PK; Feland JB; Johnson AW; Mack GW; Mitchell UH
    J Diabetes Sci Technol; 2014 Jul; 8(4):889-94. PubMed ID: 24876449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using reactive hyperemia to assess the efficacy of local cooling on reducing sacral skin ischemia under surface pressure in people with spinal cord injury: a preliminary report.
    Jan YK; Liao F; Rice LA; Woods JA
    Arch Phys Med Rehabil; 2013 Oct; 94(10):1982-9. PubMed ID: 23583346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of local skin blood flow during light and medium activities on local skin temperature predictions.
    Veselá S; Kingma BRM; Frijns AJH; van Marken Lichtenbelt WD
    J Therm Biol; 2019 Aug; 84():439-450. PubMed ID: 31466784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased Symptoms without Augmented Skin Blood Flow in Subjects with RLS/WED after Vibration Treatment.
    Mitchell UH; Hilton SC; Hunsaker E; Ulfberg J
    J Clin Sleep Med; 2016 Jul; 12(7):947-52. PubMed ID: 27070250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.