These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 32098829)

  • 1. On the mechanism of anti-CD39 immune checkpoint therapy.
    Allard D; Allard B; Stagg J
    J Immunother Cancer; 2020 Feb; 8(1):. PubMed ID: 32098829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD39/CD73/A2AR pathway and cancer immunotherapy.
    Xia C; Yin S; To KKW; Fu L
    Mol Cancer; 2023 Mar; 22(1):44. PubMed ID: 36859386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of ATP to adenosine by CD39 and CD73 in multiple myeloma can be successfully targeted together with adenosine receptor A2A blockade.
    Yang R; Elsaadi S; Misund K; Abdollahi P; Vandsemb EN; Moen SH; Kusnierczyk A; Slupphaug G; Standal T; Waage A; Slørdahl TS; Rø TB; Rustad E; Sundan A; Hay C; Cooper Z; Schuller AG; Woessner R; Borodovsky A; Menu E; Børset M; Sponaas AM
    J Immunother Cancer; 2020 May; 8(1):. PubMed ID: 32409420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting CD39 in cancer.
    Moesta AK; Li XY; Smyth MJ
    Nat Rev Immunol; 2020 Dec; 20(12):739-755. PubMed ID: 32728220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD39 - A bright target for cancer immunotherapy.
    Guo S; Han F; Zhu W
    Biomed Pharmacother; 2022 Jul; 151():113066. PubMed ID: 35550530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitors of the CD73-adenosinergic checkpoint as promising combinatory agents for conventional and advanced cancer immunotherapy.
    Kurago Z; Guo G; Shi H; Bollag RJ; Groves MW; Byrd JK; Cui Y
    Front Immunol; 2023; 14():1212209. PubMed ID: 37435071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting Immunometabolism Mediated by CD73 Pathway in
    Passarelli A; Aieta M; Sgambato A; Gridelli C
    Front Immunol; 2020; 11():1479. PubMed ID: 32760402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine in cancer immunotherapy: Taking off on a new plane.
    Zhang C; Wang K; Wang H
    Biochim Biophys Acta Rev Cancer; 2023 Nov; 1878(6):189005. PubMed ID: 37913941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting Hypoxia-A2A Adenosinergic Immunosuppression of Antitumor T Cells During Cancer Immunotherapy.
    Steingold JM; Hatfield SM
    Front Immunol; 2020; 11():570041. PubMed ID: 33117358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review immune response of targeting CD39 in cancer.
    Liu Y; Li Z; Zhao X; Xiao J; Bi J; Li XY; Chen G; Lu L
    Biomark Res; 2023 Jun; 11(1):63. PubMed ID: 37287049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of the Adenosine Pathway to Potentiate Cancer Immunotherapy: Potential for Combinatorial Approaches.
    Thompson EA; Powell JD
    Annu Rev Med; 2021 Jan; 72():331-348. PubMed ID: 32903139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting adenosine for cancer immunotherapy.
    Leone RD; Emens LA
    J Immunother Cancer; 2018 Jun; 6(1):57. PubMed ID: 29914571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the adenosine pathway for cancer immunotherapy.
    Hammami A; Allard D; Allard B; Stagg J
    Semin Immunol; 2019 Apr; 42():101304. PubMed ID: 31604539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisense oligonucleotide targeting CD39 improves anti-tumor T cell immunity.
    Kashyap AS; Thelemann T; Klar R; Kallert SM; Festag J; Buchi M; Hinterwimmer L; Schell M; Michel S; Jaschinski F; Zippelius A
    J Immunother Cancer; 2019 Mar; 7(1):67. PubMed ID: 30871609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiling of patients with glioma reveals the dominant immunosuppressive axis is refractory to immune function restoration.
    Ott M; Tomaszowski KH; Marisetty A; Kong LY; Wei J; Duna M; Blumberg K; Ji X; Jacobs C; Fuller GN; Langford LA; Huse JT; Long JP; Hu J; Li S; Weinberg JS; Prabhu SS; Sawaya R; Ferguson S; Rao G; Lang FF; Curran MA; Heimberger AB
    JCI Insight; 2020 Sep; 5(17):. PubMed ID: 32721947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting A2 adenosine receptors in cancer.
    Allard D; Turcotte M; Stagg J
    Immunol Cell Biol; 2017 Apr; 95(4):333-339. PubMed ID: 28174424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD73 as a potential opportunity for cancer immunotherapy.
    Ghalamfarsa G; Kazemi MH; Raoofi Mohseni S; Masjedi A; Hojjat-Farsangi M; Azizi G; Yousefi M; Jadidi-Niaragh F
    Expert Opin Ther Targets; 2019 Feb; 23(2):127-142. PubMed ID: 30556751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The expression of the adenosine pathway markers CD39 and CD73 in salivary gland carcinomas harbors the potential for novel immune checkpoint inhibition.
    Bauer A; Gebauer N; Knief J; Tharun L; Arnold N; Riecke A; Steinestel K; Witte HM
    J Cancer Res Clin Oncol; 2023 Jul; 149(7):3193-3208. PubMed ID: 35902382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine and the adenosine A2A receptor agonist, CGS21680, upregulate CD39 and CD73 expression through E2F-1 and CREB in regulatory T cells isolated from septic mice.
    Bao R; Shui X; Hou J; Li J; Deng X; Zhu X; Yang T
    Int J Mol Med; 2016 Sep; 38(3):969-75. PubMed ID: 27430240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD73-adenosine: a next-generation target in immuno-oncology.
    Allard D; Allard B; Gaudreau PO; Chrobak P; Stagg J
    Immunotherapy; 2016 Feb; 8(2):145-63. PubMed ID: 26808918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.