These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32098985)

  • 1. Plasmonic Manipulation of DNA using a Combination of Optical and Thermophoretic Forces: Separation of Different-Sized DNA from Mixture Solution.
    Shoji T; Itoh K; Saitoh J; Kitamura N; Yoshii T; Murakoshi K; Yamada Y; Yokoyama T; Ishihara H; Tsuboi Y
    Sci Rep; 2020 Feb; 10(1):3349. PubMed ID: 32098985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free plasmonic assisted optical trapping of single DNA molecules.
    Chen L; Liu W; Shen D; Zhou Z; Liu Y; Wan W
    Opt Lett; 2021 Mar; 46(6):1482-1485. PubMed ID: 33720217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics.
    Miao X; Wilson BK; Pun SH; Lin LY
    Opt Express; 2008 Sep; 16(18):13517-25. PubMed ID: 18772960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap.
    Ni W; Ba H; Lutich AA; Jäckel F; Feldmann J
    Nano Lett; 2012 Sep; 12(9):4647-50. PubMed ID: 22924589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning DNA binding kinetics in an optical trap by plasmonic nanoparticle heating.
    Osinkina L; Carretero-Palacios S; Stehr J; Lutich AA; Jäckel F; Feldmann J
    Nano Lett; 2013 Jul; 13(7):3140-4. PubMed ID: 23777471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light.
    Shoji T; Saitoh J; Kitamura N; Nagasawa F; Murakoshi K; Yamauchi H; Ito S; Miyasaka H; Ishihara H; Tsuboi Y
    J Am Chem Soc; 2013 May; 135(17):6643-8. PubMed ID: 23586869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized Plasmonic Heating for Single-Molecule DNA Rupture Measurements in Optical Tweezers.
    Kabtiyal P; Robbins A; Jergens E; Castro CE; Winter JO; Poirier MG; Johnston-Halperin E
    Nano Lett; 2024 Mar; 24(10):3097-3103. PubMed ID: 38417053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-optical Trapping.
    Jiang Q; Rogez B; Claude JB; Baffou G; Wenger J
    Nano Lett; 2020 Dec; 20(12):8811-8817. PubMed ID: 33237789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal nanoparticle-functionalized DNA tweezers: from mechanically programmed nanostructures to switchable fluorescence properties.
    Shimron S; Cecconello A; Lu CH; Willner I
    Nano Lett; 2013 Aug; 13(8):3791-5. PubMed ID: 23815358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic optical trap having very large active volume realized with nano-ring structure.
    Kang Z; Zhang H; Lu H; Xu J; Ong HC; Shum P; Ho HP
    Opt Lett; 2012 May; 37(10):1748-50. PubMed ID: 22627558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis.
    Lin L; Peng X; Wang M; Scarabelli L; Mao Z; Liz-Marzán LM; Becker MF; Zheng Y
    ACS Nano; 2016 Oct; 10(10):9659-9668. PubMed ID: 27640212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal plasmonic biosensing nanostructures prepared by DNA-directed immobilization of multifunctional DNA-gold nanoparticles.
    Tort N; Salvador JP; Marco MP
    Biosens Bioelectron; 2017 Apr; 90():13-22. PubMed ID: 27866079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-tailored plasmonic nanoparticles for biosensing applications.
    Lee JH; Hwang JH; Nam JM
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(1):96-109. PubMed ID: 22927287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gap Effect on Electric Field Enhancement and Photothermal Conversion in Gold Nanostructures.
    Chiba H; Kodama K; Okada K; Ichikawa Y; Motosuke M
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity.
    Chen C; Juan ML; Li Y; Maes G; Borghs G; Van Dorpe P; Quidant R
    Nano Lett; 2012 Jan; 12(1):125-32. PubMed ID: 22136462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.