These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Recovery of cerebral blood flow and energy state in piglets after hypothermic circulatory arrest versus recovery after low-flow bypass. Kawata H; Fackler JC; Aoki M; Tsuji MK; Sawatari K; Offutt M; Hickey PR; Holtzman D; Jonas RA J Thorac Cardiovasc Surg; 1993 Oct; 106(4):671-85. PubMed ID: 8412262 [TBL] [Abstract][Full Text] [Related]
9. Effect of hemodilution and profound hypothermic circulatory arrest on blood flow and oxygen consumption of the brain. Koster JK; VandeVanter SH; Bean J; Collins JJ; Cohn LH Surg Forum; 1976; 27(62):235-7. PubMed ID: 1019869 [No Abstract] [Full Text] [Related]
10. Intermittent hypothermic asanguineous cerebral perfusion (cerebroplegia) protects the brain during prolonged circulatory arrest. A phosphorus 31 nuclear magnetic resonance study. Robbins RC; Balaban RS; Swain JA J Thorac Cardiovasc Surg; 1990 May; 99(5):878-84. PubMed ID: 2329827 [TBL] [Abstract][Full Text] [Related]
12. [Regional cerebral oxygen saturation as a monitor of cerebral oxygenation and perfusion during deep hypothermic circulatory arrest and selective cerebral perfusion]. Aono M; Sata J; Nishino T Masui; 1998 Mar; 47(3):335-40. PubMed ID: 9560547 [TBL] [Abstract][Full Text] [Related]
13. Cerebral autoregulation during deep hypothermic nonpulsatile cardiopulmonary bypass with selective cerebral perfusion in dogs. Tanaka J; Shiki K; Asou T; Yasui H; Tokunaga K J Thorac Cardiovasc Surg; 1988 Jan; 95(1):124-32. PubMed ID: 3336226 [TBL] [Abstract][Full Text] [Related]
14. Impact of pump flow rate during selective cerebral perfusion on cerebral hemodynamics and metabolism. Haldenwang PL; Strauch JT; Amann I; Klein T; Sterner-Kock A; Christ H; Wahlers T Ann Thorac Surg; 2010 Dec; 90(6):1975-84. PubMed ID: 21095348 [TBL] [Abstract][Full Text] [Related]
15. [Experimental study of optimal perfusion pressure during retrograde cerebral perfusion]. Nojima T; Nakajima Y; Mori A; Watarida S; Onoe M; Sugita T; Matsuno S; Tabata R Nihon Kyobu Geka Gakkai Zasshi; 1994 Sep; 42(9):1307-14. PubMed ID: 7989789 [TBL] [Abstract][Full Text] [Related]
16. Hypothermic circulatory arrest with moderate, deep or profound hypothermic selective antegrade cerebral perfusion: which temperature provides best brain protection? Khaladj N; Peterss S; Oetjen P; von Wasielewski R; Hauschild G; Karck M; Haverich A; Hagl C Eur J Cardiothorac Surg; 2006 Sep; 30(3):492-8. PubMed ID: 16857368 [TBL] [Abstract][Full Text] [Related]
17. Selective antegrade cerebral perfusion at two different temperatures compared to hypothermic circulatory arrest--an experimental study in the pig with microdialysis. Jonsson O; Myrdal G; Zemgulis V; Valtysson J; Hillered L; Thelin S Interact Cardiovasc Thorac Surg; 2009 Jun; 8(6):647-53. PubMed ID: 19324918 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of alpha-stat and pH-stat strategies with a membrane oxygenator during deep hypothermic circulatory arrest in young pigs. Kim WG; Lim C; Moon HJ; Kim YJ Artif Organs; 2000 Nov; 24(11):908-12. PubMed ID: 11119081 [TBL] [Abstract][Full Text] [Related]
19. [Experimental study of cerebral protection by retrograde vs selective antegrade cerebral perfusion during deep hypothermic circulatory arrest]. Gao Y; Zou XM; Wang WJ; Liu GW; Gu MN Nan Fang Yi Ke Da Xue Xue Bao; 2006 May; 26(5):644-7. PubMed ID: 16762873 [TBL] [Abstract][Full Text] [Related]
20. Nitric oxide production affects cerebral perfusion and metabolism after deep hypothermic circulatory arrest. Tsui SS; Kirshbom PM; Davies MJ; Jacobs MT; Greeley WJ; Kern FH; Gaynor JW; Ungerleider RM Ann Thorac Surg; 1996 Jun; 61(6):1699-707. PubMed ID: 8651770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]