These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32099000)

  • 1. Nonstationary flood coincidence risk analysis using time-varying copula functions.
    Feng Y; Shi P; Qu S; Mou S; Chen C; Dong F
    Sci Rep; 2020 Feb; 10(1):3395. PubMed ID: 32099000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring multidecadal changes in climate and reservoir storage for assessing nonstationarity in flood peaks and risks worldwide by an integrated frequency analysis approach.
    Zhou Y
    Water Res; 2020 Oct; 185():116265. PubMed ID: 32784036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined risk assessment of nonstationary monthly water quality based on Markov chain and time-varying copula.
    Shi W; Xia J
    Water Sci Technol; 2017 Feb; 75(3-4):693-704. PubMed ID: 28192363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flood projections within the Niger River Basin under future land use and climate change.
    Aich V; Liersch S; Vetter T; Fournet S; Andersson JCM; Calmanti S; van Weert FHA; Hattermann FF; Paton EN
    Sci Total Environ; 2016 Aug; 562():666-677. PubMed ID: 27110979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Baseflow significantly contributes to river floods in Peninsular India.
    Sharma S; Mujumdar PP
    Sci Rep; 2024 Jan; 14(1):1251. PubMed ID: 38218731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Blueprint for Full Collective Flood Risk Estimation: Demonstration for European River Flooding.
    Serinaldi F; Kilsby CG
    Risk Anal; 2017 Oct; 37(10):1958-1976. PubMed ID: 28032665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the limiting water level of early flood season by combining multiobjective optimization scheduling and copula joint distribution function: A case study of three gorges reservoir.
    Ma C; Xu R; He W; Xia J
    Sci Total Environ; 2020 Oct; 737():139789. PubMed ID: 32526576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projection of Future Extreme Precipitation and Flood Changes of the Jinsha River Basin in China Based on CMIP5 Climate Models.
    Yuan Z; Xu J; Wang Y
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30413030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of climate variability on flood risk in Poland.
    Kaczmarek Z
    Risk Anal; 2003 Jun; 23(3):559-66. PubMed ID: 12836848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrometeorology and flood pulse dynamics drive diarrheal disease outbreaks and increase vulnerability to climate change in surface-water-dependent populations: A retrospective analysis.
    Alexander KA; Heaney AK; Shaman J
    PLoS Med; 2018 Nov; 15(11):e1002688. PubMed ID: 30408029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of increased flood risk due to global climate change for urban river management planning.
    Morita M
    Water Sci Technol; 2011; 63(12):2967-74. PubMed ID: 22049726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in toxicity and Ah receptor agonist activity of suspended particulate matter during flood events at the rivers Neckar and Rhine - a mass balance approach using in vitro methods and chemical analysis.
    Wölz J; Engwall M; Maletz S; Olsman Takner H; van Bavel B; Kammann U; Klempt M; Weber R; Braunbeck T; Hollert H
    Environ Sci Pollut Res Int; 2008 Oct; 15(7):536-53. PubMed ID: 18936997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint Risk of Rainfall and Storm Surges during Typhoons in a Coastal City of Haidian Island, China.
    Xu H; Xu K; Bin L; Lian J; Ma C
    Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29966359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A factorial Bayesian copula framework for partitioning uncertainties in multivariate risk inference.
    Fan Y; Huang K; Huang GH; Li YP
    Environ Res; 2020 Apr; 183():109215. PubMed ID: 32062482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on a monitoring program regarding leptospirosis in some fore-and-after flood-affected along large rivers in Anhui province].
    Ren J; Gu LL; Liu H; Wang JJ; Wang J; Wu JB; He L; Li FR; Hu WF; Wang YY; Luo ZZ
    Zhonghua Liu Xing Bing Xue Za Zhi; 2005 Sep; 26(9):690-3. PubMed ID: 16471220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global-scale river flood vulnerability in the last 50 years.
    Tanoue M; Hirabayashi Y; Ikeuchi H
    Sci Rep; 2016 Oct; 6():36021. PubMed ID: 27782160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-stationarity analysis of flood flows using copula based change-point detection method: Application to case study of Godavari river basin.
    Akbari S; Reddy MJ
    Sci Total Environ; 2020 May; 718():134894. PubMed ID: 31839305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of stationary and nonstationary estimation of return period for sewer design in Antioquia (Colombia).
    Chica-Osorio PA; Carvajal-Serna LF; Ochoa A
    An Acad Bras Cienc; 2022; 94(suppl 4):e20200810. PubMed ID: 36541970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compounding effects of sea level rise and fluvial flooding.
    Moftakhari HR; Salvadori G; AghaKouchak A; Sanders BF; Matthew RA
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9785-9790. PubMed ID: 28847932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics.
    Whitehead PG; Barbour E; Futter MN; Sarkar S; Rodda H; Caesar J; Butterfield D; Jin L; Sinha R; Nicholls R; Salehin M
    Environ Sci Process Impacts; 2015 Jun; 17(6):1057-69. PubMed ID: 25736595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.