These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32099061)

  • 1. Molecular Dynamics Simulations of Melting Iron Nanoparticles with/without Defects Using a Reaxff Reactive Force Field.
    Sun J; Liu P; Wang M; Liu J
    Sci Rep; 2020 Feb; 10(1):3408. PubMed ID: 32099061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals.
    Huang HS; Ai LQ; van Duin ACT; Chen M; Lü YJ
    J Chem Phys; 2019 Sep; 151(9):094503. PubMed ID: 31492056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Fe-O ReaxFF on Liquid Iron Oxide Properties Derived from Reactive Molecular Dynamics.
    Thijs LC; Kritikos EM; Giusti A; van Ende MA; van Duin ACT; Mi X
    J Phys Chem A; 2023 Dec; 127(48):10339-10355. PubMed ID: 37984360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of melting and sintering of Si nanoparticles: a comparison of different force fields and computational models.
    Sementa L; Barcaro G; Monti S; Carravetta V
    Phys Chem Chem Phys; 2018 Jan; 20(3):1707-1715. PubMed ID: 29265136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the sorption dynamics of NaH using a reactive force field.
    Ojwang JG; van Santen R; Kramer GJ; van Duin AC; Goddard WA
    J Chem Phys; 2008 Apr; 128(16):164714. PubMed ID: 18447486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenomenology of the heating, melting and diffusion processes in Au nanoparticles.
    Bertoldi DS; Millán EN; Fernández Guillermet A
    Phys Chem Chem Phys; 2021 Jan; 23(2):1298-1307. PubMed ID: 33367349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of melting and the glass transition of nitromethane.
    Zheng L; Luo SN; Thompson DL
    J Chem Phys; 2006 Apr; 124(15):154504. PubMed ID: 16674239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melting Point and Crystal Growth Kinetics of Metals and Metal Oxides Using Reactive Force Fields: The Case of Aluminum and Alumina.
    Zhao H; Bresme F
    J Chem Theory Comput; 2024 Sep; 20(18):8190-201. PubMed ID: 39235996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: molecular dynamics study of elastic constants, diffusion, and segregation.
    Shin YK; Kwak H; Zou C; Vasenkov AV; van Duin AC
    J Phys Chem A; 2012 Dec; 116(49):12163-74. PubMed ID: 23167515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulations of the solid, liquid, and melting of 1-n-butyl-4-amino-1,2,4-triazolium bromide.
    Alavi S; Thompson DL
    J Phys Chem B; 2005 Sep; 109(38):18127-34. PubMed ID: 16853328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of the melting of aluminum nanoparticles.
    Alavi S; Thompson DL
    J Phys Chem A; 2006 Feb; 110(4):1518-23. PubMed ID: 16435812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the ReaxFF Reactive Force Field for Inherent Point Defects in the Si/Silica System.
    Nayir N; van Duin ACT; Erkoc S
    J Phys Chem A; 2019 May; 123(19):4303-4313. PubMed ID: 31017438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular-dynamics study of structural and physical properties of nitromethane nanoparticles.
    Alavi S; Thompson DL
    J Chem Phys; 2004 Jun; 120(21):10231-9. PubMed ID: 15268047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enabling Computational Design of ZIFs Using ReaxFF.
    Yang Y; Shin YK; Li S; Bennett TD; van Duin ACT; Mauro JC
    J Phys Chem B; 2018 Oct; 122(41):9616-9624. PubMed ID: 30265536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of ReaxFF Reactive Force Field for Aqueous Iron-Sulfur Clusters with Applications to Stability and Reactivity in Water.
    Moerman E; Furman D; Wales DJ
    J Chem Inf Model; 2021 Mar; 61(3):1204-1214. PubMed ID: 33617718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the pyrolysis of coals of different rank using the ReaxFF reactive force field.
    Guo L; Zhou Z; Chen L; Shan S; Wang Z
    J Mol Model; 2019 May; 25(6):174. PubMed ID: 31144031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a transferable reactive force field for cobalt.
    Labrosse MR; Johnson JK; van Duin AC
    J Phys Chem A; 2010 May; 114(18):5855-61. PubMed ID: 20394398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the degradation of polypropylene and polystyrene under shock compression and mechanical cleaving using the ReaxFF force field.
    Panczyk T; Nieszporek K; Wolski P
    Chemosphere; 2024 Jun; 357():142056. PubMed ID: 38641294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion.
    Cheng T; Jaramillo-Botero A; Goddard WA; Sun H
    J Am Chem Soc; 2014 Jul; 136(26):9434-42. PubMed ID: 24885152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melting at Mg/Al interface in Mg-Al-Mg nanolayer by molecular dynamics simulations.
    Lv XQ; Li XY
    Nanotechnology; 2022 Jan; 33(14):. PubMed ID: 34937008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.