These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32099061)

  • 21. Triacylglyceride melting point determination using coarse-grained molecular dynamics.
    Cordina RJ; Smith B; Tuttle T
    J Comput Chem; 2023 Aug; 44(21):1795-1801. PubMed ID: 37163230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a reactive force field for the Fe-C interaction to investigate the carburization of iron.
    Lu K; Huo CF; Guo WP; Liu XW; Zhou Y; Peng Q; Yang Y; Li YW; Wen XD
    Phys Chem Chem Phys; 2018 Jan; 20(2):775-783. PubMed ID: 29177358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mechanism of hydrogen-accelerated melting of polycrystalline copper.
    Huang H; Ai L; Chen M; Lü Y
    Phys Chem Chem Phys; 2021 Feb; 23(6):3942-3948. PubMed ID: 33543736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predictions of melting, crystallization, and local atomic arrangements of aluminum clusters using a reactive force field.
    Ojwang' JG; van Santen R; Kramer GJ; van Duin AC; Goddard WA
    J Chem Phys; 2008 Dec; 129(24):244506. PubMed ID: 19123516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions of hydrogen with the iron and iron carbide interfaces: a ReaxFF molecular dynamics study.
    Islam MM; Zou C; van Duin AC; Raman S
    Phys Chem Chem Phys; 2016 Jan; 18(2):761-71. PubMed ID: 26626108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of composition and architecture on the thermodynamic behavior of AuCu nanoparticles.
    Yang WH; Yu FQ; Huang R; Lin YX; Wen YH
    Nanoscale; 2024 Jul; 16(27):13197-13209. PubMed ID: 38916453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reactive molecular dynamics simulations on thermal decomposition of 3-methyl-2,6-dinitrophenol.
    Zhao J; Xiao Y; He J; Wang J
    J Mol Model; 2022 Jan; 28(2):45. PubMed ID: 35079908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monitoring the melting behavior of boron nanoparticles using a neural network potential.
    Chang X; Chu Q; Chen D
    Phys Chem Chem Phys; 2023 May; 25(18):12841-12853. PubMed ID: 37165915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactive Molecular Dynamics Simulations of the Thermal Decomposition Mechanism of 1,3,3-Trinitroazetidine.
    Junying WU; Yanxi H; Lijun Y; Deshen G; Fuping W; Heqi W; Lang C
    Chemphyschem; 2018 Oct; 19(20):2683-2695. PubMed ID: 30033624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactive force field development for magnesium chloride hydrates and its application for seasonal heat storage.
    Pathak AD; Nedea S; van Duin AC; Zondag H; Rindt C; Smeulders D
    Phys Chem Chem Phys; 2016 Jun; 18(23):15838-47. PubMed ID: 27229633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface Structure and Stability of Partially Hydroxylated Silica Surfaces.
    Rimsza JM; Jones RE; Criscenti LJ
    Langmuir; 2017 Apr; 33(15):3882-3891. PubMed ID: 28375622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parametrization of a Reactive Force Field (ReaxFF) for Molecular Dynamics Simulations of Si Nanoparticles.
    Barcaro G; Monti S; Sementa L; Carravetta V
    J Chem Theory Comput; 2017 Aug; 13(8):3854-3861. PubMed ID: 28640604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulations of laser-induced incandescence of soot using an extended ReaxFF reactive force field.
    Kamat AM; van Duin AC; Yakovlev A
    J Phys Chem A; 2010 Dec; 114(48):12561-72. PubMed ID: 21067165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and validation of a general-purpose ReaxFF reactive force field for earth material modeling.
    Zhang Y; Liu X; van Duin ACT; Lu X; Meijer EJ
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38426512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations.
    Zhang L; Zybin SV; van Duin AC; Dasgupta S; Goddard WA; Kober EM
    J Phys Chem A; 2009 Oct; 113(40):10619-40. PubMed ID: 19791809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive molecular dynamics simulation on the disintegration of Kapton, POSS polyimide, amorphous silica, and teflon during atomic oxygen impact using the ReaxFF reactive force-field method.
    Rahnamoun A; van Duin AC
    J Phys Chem A; 2014 Apr; 118(15):2780-7. PubMed ID: 24679339
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion.
    Weismiller MR; van Duin AC; Lee J; Yetter RA
    J Phys Chem A; 2010 May; 114(17):5485-92. PubMed ID: 20384351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics studies of melting and some liquid-state properties of 1-ethyl-3-methylimidazolium hexafluorophosphate [emim][PF6].
    Alavi S; Thompson DL
    J Chem Phys; 2005 Apr; 122(15):154704. PubMed ID: 15945653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. General application of Tolman's concept of activation energy.
    Rafatijo H; Thompson DL
    J Chem Phys; 2017 Dec; 147(22):224111. PubMed ID: 29246068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics simulations of the melting of 1,3,3-trinitroazetidine.
    Agrawal PM; Rice BM; Zheng L; Velardez GF; Thompson DL
    J Phys Chem B; 2006 Mar; 110(11):5721-6. PubMed ID: 16539517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.