These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3209975)

  • 1. Hypersensitivity to light of the iris (Sphincter pupillae) of the albino axolotl (Ambystoma mexicanum).
    Barr L
    J Exp Biol; 1988 Jul; 137():589-96. PubMed ID: 3209975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A search for the photoreceptor in the photosensitive irises of normally pigmented and albino hamsters (Mesocricetus auratus).
    Zucker RM; Nolte J
    Curr Eye Res; 1981; 1(1):9-18. PubMed ID: 7297094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative model of myosin phosphorylation and the photomechanical response of the isolated sphincter pupillae of the frog iris.
    Barr L; Gu FJ
    Biophys J; 1987 Jun; 51(6):895-904. PubMed ID: 3496922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photomechanical coupling in the vertebrate sphincter pupillae.
    Barr L
    Crit Rev Neurobiol; 1989; 4(4):325-66. PubMed ID: 2655940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct action of light in naturally pigmented muscle fibers. I. Action spectrum for contraction in eel iris sphincter.
    SELIGER HH
    J Gen Physiol; 1962 Nov; 46(2):333-42. PubMed ID: 13992712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic effects of botulinum toxin type A on the neuronally evoked response of albino and pigmented rabbit iris sphincter and dilator muscles.
    Ishikawa H; Mitsui Y; Yoshitomi T; Mashimo K; Aoki S; Mukuno K; Shimizu K
    Jpn J Ophthalmol; 2000; 44(2):106-9. PubMed ID: 10715374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light and electron microscopic studies regarding cell contractility and cell coupling in light sensitive smooth muscle cells from the isolated frog iris sphincter.
    Wolf KV
    Z Naturforsch C J Biosci; 1987; 42(7-8):977-85. PubMed ID: 2961156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action of biologically active peptides on monkey iris sphincter and dilator muscles.
    Yamaji K; Yoshitomi T; Usui S
    Exp Eye Res; 2005 Jun; 80(6):815-20. PubMed ID: 15939037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinofugal pathways from albino eyes embryonically transplanted to normal and albino axolotls.
    Cole J; Dolin R; Fahrner K; Gallenson N; Hall J; Harris W
    Brain Res; 1982 Nov; 281(3):346-9. PubMed ID: 7150982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force relaxes before the fall of cytosolic calcium in the photomechanical response of rat sphincter pupillae.
    Krivoshik AP; Barr L
    Am J Physiol Cell Physiol; 2000 Jul; 279(1):C274-80. PubMed ID: 10898739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pigmentary system of developing axolotls. III. An analysis of the albino phenotype.
    Frost SK; Epp LG; Robinson SJ
    J Embryol Exp Morphol; 1986 Mar; 92():255-68. PubMed ID: 3723064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in brain gangliosides of the neotene and metamorphic (thyroxine-induced) newt axolotl (Ambystoma mexicanum).
    Hilbig R; Schmitt M; Rahmann H
    Dev Neurosci; 1987; 9(4):240-6. PubMed ID: 3428191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomic innervation and photosensitivity of the sphincter pupillae muscle of two teleosts: Lophius piscatorius and Opsanus tau.
    Rubin L; Nolte J
    Curr Eye Res; 1981-1982; 1(9):543-51. PubMed ID: 7341067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thyroxine and triiodothyronine in plasma and thyroids of the neotenic and metamorphosed axolotl Ambystoma mexicanum: influence of TRH injections.
    Jacobs GF; Michielsen RP; Kühn ER
    Gen Comp Endocrinol; 1988 Apr; 70(1):145-51. PubMed ID: 3131185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The presence of two sites of action of endothelins in the isolated rabbit iris sphincter and dilator muscles.
    Ishikawa H; Yoshitomi T; Harada Y; Katori M; Ishikawa S
    Curr Eye Res; 1993 Dec; 12(12):1049-55. PubMed ID: 8137629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What insights into vertebrate pigmentation has the axolotl model system provided?
    Frost-Mason SK; Mason KA
    Int J Dev Biol; 1996 Aug; 40(4):685-93. PubMed ID: 8877441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of surgical sympathetic denervation on myo-inositol trisphosphate production and contraction in the dilator and sphincter smooth muscles of the rabbit iris: evidence for interaction between the cyclic AMP and calcium signaling systems.
    Abdel-Latif AA; Zhang YW
    J Neurochem; 1991 Aug; 57(2):447-57. PubMed ID: 1712829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A test of the punctuated-cycling hypothesis in Ambystoma forelimb regenerates: the roles of animal size, limb innervation, and the aneurogenic condition.
    Tomlinson BL; Barger PM
    Differentiation; 1987; 35(1):6-15. PubMed ID: 3428513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pigmentary system of developing axolotls. I. A biochemical and structural analysis of chromatophores in wild-type axolotls.
    Frost SK; Epp LG; Robinson SJ
    J Embryol Exp Morphol; 1984 Jun; 81():105-25. PubMed ID: 6470605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of subnormally innervated axolotl arms.
    Wallace H; Watson A; Egar M
    J Embryol Exp Morphol; 1981 Apr; 62():1-11. PubMed ID: 7276803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.