These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
406 related articles for article (PubMed ID: 32100785)
1. A lysosome-targeted near-infrared fluorescent probe for imaging endogenous cysteine (Cys) in living cells. Cai S; Liu C; Jiao X; Zhao L; Zeng X J Mater Chem B; 2020 Mar; 8(11):2269-2274. PubMed ID: 32100785 [TBL] [Abstract][Full Text] [Related]
2. A lysosome-targeted near-infrared fluorescent probe for imaging of acid phosphatase in living cells. Cai S; Liu C; Jiao X; He S; Zhao L; Zeng X Org Biomol Chem; 2020 Feb; 18(6):1148-1154. PubMed ID: 31971197 [TBL] [Abstract][Full Text] [Related]
3. Mitochondria-Targeted Near-Infrared Fluorescent Off-On Probe for Selective Detection of Cysteine in Living Cells and in Vivo. Han C; Yang H; Chen M; Su Q; Feng W; Li F ACS Appl Mater Interfaces; 2015 Dec; 7(50):27968-75. PubMed ID: 26618279 [TBL] [Abstract][Full Text] [Related]
4. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative. Liang B; Wang B; Ma Q; Xie C; Li X; Wang S Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():67-74. PubMed ID: 29126010 [TBL] [Abstract][Full Text] [Related]
5. Cooperation of ESIPT and ICT Processes in the Designed 2-(2'-Hydroxyphenyl)benzothiazole Derivative: A Near-Infrared Two-Photon Fluorescent Probe with a Large Stokes Shift for the Detection of Cysteine and Its Application in Biological Environments. Long Y; Liu J; Tian D; Dai F; Zhang S; Zhou B Anal Chem; 2020 Oct; 92(20):14236-14243. PubMed ID: 33030891 [TBL] [Abstract][Full Text] [Related]
6. A New Lysosome-Targeted NIR Fluorescent Probe for Specific Detection of Cysteine over Homocysteine and Glutathione. Liu Q; Liu C; He S; Zeng X; Zhang J; Gong J Molecules; 2023 Aug; 28(17):. PubMed ID: 37687018 [TBL] [Abstract][Full Text] [Related]
7. Near-Infrared Fluorescent Probe for the Detection of Cysteine. Wang M; Yang X; Yuan M; Zhou W; Yang L Appl Spectrosc; 2024 Jul; 78(7):744-752. PubMed ID: 39096170 [TBL] [Abstract][Full Text] [Related]
8. A lysosome-targetable fluorescent probe for real-time imaging cysteine under oxidative stress in living cells. Wang XD; Fan L; Ge JY; Li F; Zhang CH; Wang JJ; Shuang SM; Dong C Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct; 221():117175. PubMed ID: 31158770 [TBL] [Abstract][Full Text] [Related]
9. A novel near-infrared fluorescent probe for highly selective detection of cysteine and its application in living cells. Zhang W; Liu J; Yu Y; Han Q; Cheng T; Shen J; Wang B; Jiang Y Talanta; 2018 Aug; 185():477-482. PubMed ID: 29759230 [TBL] [Abstract][Full Text] [Related]
10. Near-infrared ratiometric fluorescent detection of arginine in lysosome with a new hemicyanine derivative. Yu M; Du W; Li H; Zhang H; Li Z Biosens Bioelectron; 2017 Jun; 92():385-389. PubMed ID: 27838202 [TBL] [Abstract][Full Text] [Related]
11. A long-wavelength fluorescent probe with a large Stokes shift for lysosome-targeted imaging of Cys and GSH. Sun YH; Han HH; Huang JM; Li J; Zang Y; Wang CY Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120055. PubMed ID: 34153552 [TBL] [Abstract][Full Text] [Related]
12. A fluorescence turn-on probe for cysteine and homocysteine based on thiol-triggered benzothiazolidine ring formation. Liu SR; Chang CY; Wu SP Anal Chim Acta; 2014 Nov; 849():64-9. PubMed ID: 25300219 [TBL] [Abstract][Full Text] [Related]
13. A lysosome-targeted fluorescent probe based on a BODIPY structure for Cys/Hcy detection. Zhang W; Wu B; Liang M; Zhang M; Hu Y; Huang ZS; Ye X; Du B; Quan YY; Jiang Y Anal Methods; 2024 Feb; 16(5):686-694. PubMed ID: 38205809 [TBL] [Abstract][Full Text] [Related]
14. A simple lysosome-targeted fluorescent probe based on flavonoid for detection of cysteine in living cells. Tan H; Zou Y; Guo J; Chen J; Zhou L Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121552. PubMed ID: 35759931 [TBL] [Abstract][Full Text] [Related]
15. A visible and near-infrared, dual emission fluorescent probe based on thiol reactivity for selectively tracking mitochondrial glutathione in vitro. Xu Y; Li R; Zhou X; Li W; Ernest U; Wan H; Li L; Chen H; Yuan Z Talanta; 2019 Dec; 205():120125. PubMed ID: 31450407 [TBL] [Abstract][Full Text] [Related]
16. Real-Time Monitoring of Endogenous Cysteine Levels In Vivo by near-Infrared Turn-on Fluorescent Probe with Large Stokes Shift. Qi Y; Huang Y; Li B; Zeng F; Wu S Anal Chem; 2018 Jan; 90(1):1014-1020. PubMed ID: 29182316 [TBL] [Abstract][Full Text] [Related]
17. A water-soluble near-infrared fluorescent probe for sensitive and selective detection of cysteine. Zhang S; Wu D; Wu J; Xia Q; Jia X; Song X; Zeng L; Yuan Y Talanta; 2019 Nov; 204():747-752. PubMed ID: 31357361 [TBL] [Abstract][Full Text] [Related]
18. A near-infrared fluorescent probe based on photostable Si-rhodamine for imaging hypochlorous acid during lysosome-involved inflammatory response. Mao GJ; Liang ZZ; Bi J; Zhang H; Meng HM; Su L; Gong YJ; Feng S; Zhang G Anal Chim Acta; 2019 Feb; 1048():143-153. PubMed ID: 30598144 [TBL] [Abstract][Full Text] [Related]
19. An ultralow concentration of two-photon fluorescent probe for rapid and selective detection of lysosomal cysteine in living cells. Long Z; Chen L; Dang Y; Chen D; Lou X; Xia F Talanta; 2019 Nov; 204():762-768. PubMed ID: 31357363 [TBL] [Abstract][Full Text] [Related]
20. An extra-large Stokes shift near-infrared fluorescent probe for specific detection and imaging of cysteine. An S; Lin Y; Ye T; Bai T; He D; Guo L; Qian Z; Li L; Liu H; Wang J Talanta; 2024 Jan; 267():125247. PubMed ID: 37769499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]