These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32100799)

  • 1. Dynamic screening and printing of single cells using a microfluidic chip with dual microvalves.
    Chen C; Xu D; Bai S; Yu Z; Zhu Y; Xing X; Chen H
    Lab Chip; 2020 Apr; 20(7):1227-1237. PubMed ID: 32100799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The method to dynamically screen and print single cells using microfluidics with pneumatic microvalves.
    Chen C; Zhu Y; Ho JWK; Chen H
    MethodsX; 2021; 8():101190. PubMed ID: 33425688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of Dynamic Concentration Profile Using A Microfluidic Device Integrating Pneumatic Microvalves.
    Chen C; Li P; Guo T; Chen S; Xu D; Chen H
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36291005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-Based Sorting and In Situ Clonal Expansion of Single Cells Using Microfluidics.
    Chen H; Meng H; Chen Z; Wang T; Chen C; Zhu Y; Jin J
    Biosensors (Basel); 2022 Nov; 12(12):. PubMed ID: 36551067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous trapping, elasticity measuring and deterministic printing of single cells using arrayed microfluidic traps.
    Cai Y; Yu E; Jin J; Liu Y; Chen H
    Lab Chip; 2023 Jul; 23(15):3467-3478. PubMed ID: 37427692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated and parallel microfluidic DNA extraction with integrated pneumatic microvalves/pumps and reusable open-channel columns.
    Zhong R; Wang M; Lin B
    Electrophoresis; 2023 May; 44(9-10):825-834. PubMed ID: 36694428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automation of cell culture assays using a 3D-printed servomotor-controlled microfluidic valve system.
    Winkler S; Menke J; Meyer KV; Kortmann C; Bahnemann J
    Lab Chip; 2022 Nov; 22(23):4656-4665. PubMed ID: 36342331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices.
    Park JM; Cho YK; Lee BS; Lee JG; Ko C
    Lab Chip; 2007 May; 7(5):557-64. PubMed ID: 17476373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets.
    Witters D; Knez K; Ceyssens F; Puers R; Lammertyn J
    Lab Chip; 2013 Jun; 13(11):2047-54. PubMed ID: 23609603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printed Quake-style microvalves and micropumps.
    Lee YS; Bhattacharjee N; Folch A
    Lab Chip; 2018 Apr; 18(8):1207-1214. PubMed ID: 29553156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferrowax microvalves for fully automated serial dilution on centrifugal microfluidic platforms.
    Kim S; Song J; Kim R; Lee NY; Kim MH; Park HG
    Biotechnol J; 2021 Dec; 16(12):e2100131. PubMed ID: 34499815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Compact Control System to Enable Automated Operation of Microfluidic Bioanalytical Assays.
    Gonzalez-Suarez AM; Long A; Huang X; Revzin A
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Room-Temperature Bonding Method Based on Electrohydrodynamic Printing.
    Wu W; Yang X; Liu R; Yin Z; Wang DF; Zou H; Hu W; Li L
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1672-1677. PubMed ID: 33404432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends.
    Zhang C; Xing D; Li Y
    Biotechnol Adv; 2007; 25(5):483-514. PubMed ID: 17601695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upscaling of pneumatic membrane valves for the integration of 3D cell cultures on chip.
    Compera N; Atwell S; Wirth J; Wolfrum B; Meier M
    Lab Chip; 2021 Aug; 21(15):2986-2996. PubMed ID: 34143169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screen-printed microfluidic dielectrophoresis chip for cell separation.
    Zhu H; Lin X; Su Y; Dong H; Wu J
    Biosens Bioelectron; 2015 Jan; 63():371-378. PubMed ID: 25127471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free single-cell isolation enabled by microfluidic impact printing and real-time cellular recognition.
    Wang Y; Wang X; Pan T; Li B; Chu J
    Lab Chip; 2021 Sep; 21(19):3695-3706. PubMed ID: 34581393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic chips controlled with elastomeric microvalve arrays.
    Li N; Sip C; Folch A
    J Vis Exp; 2007; (8):296. PubMed ID: 18989408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.