BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32100873)

  • 1. Purifying stem cell-derived red blood cells: a high-throughput label-free downstream processing strategy based on microfluidic spiral inertial separation and membrane filtration.
    Guzniczak E; Otto O; Whyte G; Chandra T; Robertson NA; Willoughby N; Jimenez M; Bridle H
    Biotechnol Bioeng; 2020 Jul; 117(7):2032-2045. PubMed ID: 32100873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformability-induced lift force in spiral microchannels for cell separation.
    Guzniczak E; Otto O; Whyte G; Willoughby N; Jimenez M; Bridle H
    Lab Chip; 2020 Feb; 20(3):614-625. PubMed ID: 31915780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformability and size-based cancer cell separation using an integrated microfluidic device.
    Pang L; Shen S; Ma C; Ma T; Zhang R; Tian C; Zhao L; Liu W; Wang J
    Analyst; 2015 Nov; 140(21):7335-46. PubMed ID: 26366443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput assessment of mechanical properties of stem cell derived red blood cells, toward cellular downstream processing.
    Guzniczak E; Mohammad Zadeh M; Dempsey F; Jimenez M; Bock H; Whyte G; Willoughby N; Bridle H
    Sci Rep; 2017 Oct; 7(1):14457. PubMed ID: 29089557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation.
    Shen S; Tian C; Li T; Xu J; Chen SW; Tu Q; Yuan MS; Liu W; Wang J
    Lab Chip; 2017 Oct; 17(21):3578-3591. PubMed ID: 28975177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorting of human mesenchymal stem cells by applying optimally designed microfluidic chip filtration.
    Jung H; Chun MS; Chang MS
    Analyst; 2015 Feb; 140(4):1265-74. PubMed ID: 25555081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation.
    Rafeie M; Zhang J; Asadnia M; Li W; Warkiani ME
    Lab Chip; 2016 Aug; 16(15):2791-802. PubMed ID: 27377196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic inertia enhanced phase partitioning for enriching nucleated cell populations in blood.
    Parichehreh V; Medepallai K; Babbarwal K; Sethu P
    Lab Chip; 2013 Mar; 13(5):892-900. PubMed ID: 23307172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip.
    Amato L; Gu Y; Bellini N; Eaton SM; Cerullo G; Osellame R
    Lab Chip; 2012 Mar; 12(6):1135-42. PubMed ID: 22318474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-equilibrium Inertial Separation Array for High-throughput, Large-volume Blood Fractionation.
    Mutlu BR; Smith KC; Edd JF; Nadar P; Dlamini M; Kapur R; Toner M
    Sci Rep; 2017 Aug; 7(1):9915. PubMed ID: 28855584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive circulating cell sorting by deformability using a microfluidic gradual filter.
    Preira P; Grandné V; Forel JM; Gabriele S; Camara M; Theodoly O
    Lab Chip; 2013 Jan; 13(1):161-70. PubMed ID: 23147069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorting cells by size, shape and deformability.
    Beech JP; Holm SH; Adolfsson K; Tegenfeldt JO
    Lab Chip; 2012 Mar; 12(6):1048-51. PubMed ID: 22327631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women.
    Huang R; Barber TA; Schmidt MA; Tompkins RG; Toner M; Bianchi DW; Kapur R; Flejter WL
    Prenat Diagn; 2008 Oct; 28(10):892-9. PubMed ID: 18821715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Passive Microfluidic Device Based on Crossflow Filtration for Cell Separation Measurements: A Spectrophotometric Characterization.
    Faustino V; Catarino SO; Pinho D; Lima RA; Minas G
    Biosensors (Basel); 2018 Dec; 8(4):. PubMed ID: 30544881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic diafiltration-on-chip using an integrated magnetic peristaltic micropump.
    Liu JF; Yadavali S; Tsourkas A; Issadore D
    Lab Chip; 2017 Nov; 17(22):3796-3803. PubMed ID: 29043350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of rare oligodendrocyte progenitor cells from brain using a high-throughput multilayer thermoplastic-based microfluidic device.
    Didar TF; Li K; Veres T; Tabrizian M
    Biomaterials; 2013 Jul; 34(22):5588-93. PubMed ID: 23628474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.