These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32100873)

  • 21. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separation of leukocytes from blood using spiral channel with trapezoid cross-section.
    Wu L; Guan G; Hou HW; Bhagat AA; Han J
    Anal Chem; 2012 Nov; 84(21):9324-31. PubMed ID: 23025404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sheathless inertial cell ordering for extreme throughput flow cytometry.
    Hur SC; Tse HT; Di Carlo D
    Lab Chip; 2010 Feb; 10(3):274-80. PubMed ID: 20090998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A single-view field filter device for rare tumor cell filtration and enumeration.
    Quan Y; Chen K; Xiang N; Ni Z
    Electrophoresis; 2020 Dec; 41(23):2000-2006. PubMed ID: 32767389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation.
    Zhang X; Zhu Z; Xiang N; Long F; Ni Z
    Anal Chem; 2018 Mar; 90(6):4212-4220. PubMed ID: 29493225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-cost multi-core inertial microfluidic centrifuge for high-throughput cell concentration.
    Xiang N; Li Q; Shi Z; Zhou C; Jiang F; Han Y; Ni Z
    Electrophoresis; 2020 Jun; 41(10-11):875-882. PubMed ID: 31705675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device.
    Lee D; Sukumar P; Mahyuddin A; Choolani M; Xu G
    J Chromatogr A; 2010 Mar; 1217(11):1862-6. PubMed ID: 20144459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A numbering-up strategy of hydrodynamic microfluidic filters for continuous-flow high-throughput cell sorting.
    Ozawa R; Iwadate H; Toyoda H; Yamada M; Seki M
    Lab Chip; 2019 May; 19(10):1828-1837. PubMed ID: 30998230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Particle sorting using a porous membrane in a microfluidic device.
    Wei H; Chueh BH; Wu H; Hall EW; Li CW; Schirhagl R; Lin JM; Zare RN
    Lab Chip; 2011 Jan; 11(2):238-45. PubMed ID: 21057685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high throughput microfluidic platform for size-selective enrichment of cell populations in tissue and blood samples.
    Nivedita N; Garg N; Lee AP; Papautsky I
    Analyst; 2017 Jul; 142(14):2558-2569. PubMed ID: 28634607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Label-free cell separation using a tunable magnetophoretic repulsion force.
    Shen F; Hwang H; Hahn YK; Park JK
    Anal Chem; 2012 Apr; 84(7):3075-81. PubMed ID: 22380761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Streamline-based purification of bacterial samples from liquefied sputum utilizing microfluidics.
    Wu T; Shao C; Li L; Wang S; Ouyang Q; Kang Y; Luo C
    Lab Chip; 2017 Oct; 17(21):3601-3608. PubMed ID: 28975175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of aspect ratio for complete separation in an inertial microfluidic channel.
    Zhou J; Giridhar PV; Kasper S; Papautsky I
    Lab Chip; 2013 May; 13(10):1919-29. PubMed ID: 23529341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Label-free ferrohydrodynamic cell separation of circulating tumor cells.
    Zhao W; Cheng R; Jenkins BD; Zhu T; Okonkwo NE; Jones CE; Davis MB; Kavuri SK; Hao Z; Schroeder C; Mao L
    Lab Chip; 2017 Sep; 17(18):3097-3111. PubMed ID: 28809987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Triplet Parallelizing Spiral Microfluidic Chip for Continuous Separation of Tumor Cells.
    Chen H
    Sci Rep; 2018 Mar; 8(1):4042. PubMed ID: 29511230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stiffness dependent separation of cells in a microfluidic device.
    Wang G; Mao W; Byler R; Patel K; Henegar C; Alexeev A; Sulchek T
    PLoS One; 2013; 8(10):e75901. PubMed ID: 24146787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Separation of cancer cells from a red blood cell suspension using inertial force.
    Tanaka T; Ishikawa T; Numayama-Tsuruta K; Imai Y; Ueno H; Matsuki N; Yamaguchi T
    Lab Chip; 2012 Nov; 12(21):4336-43. PubMed ID: 22899210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Open Space Diffusive Filter for Simultaneous Species Retrieval and Separation.
    Mathur P; Fomitcheva Khartchenko A; deMello AJ; Kaigala GV
    Anal Chem; 2020 Sep; 92(17):11548-11552. PubMed ID: 32635720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.