These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32101035)

  • 1.
    Jones LM; Dunham D; Rennie MY; Kirman J; Lopez AJ; Keim KC; Little W; Gomez A; Bourke J; Ng H; DaCosta RS; Smith AC
    Future Microbiol; 2020 Mar; 15():319-332. PubMed ID: 32101035
    [No Abstract]   [Full Text] [Related]  

  • 2. Detection of bacterial fluorescence from in vivo wound biofilms using a point-of-care fluorescence imaging device.
    Lopez AJ; Jones LM; Reynolds L; Diaz RC; George IK; Little W; Fleming D; D'souza A; Rennie MY; Rumbaugh KP; Smith AC
    Int Wound J; 2021 Oct; 18(5):626-638. PubMed ID: 33565263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization and elimination of polymicrobial biofilms by a combination of ALA-carvacrol-blue light.
    Li Y; Wu MX
    J Photochem Photobiol B; 2022 Sep; 234():112525. PubMed ID: 35841737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodynamic inactivation mediated by 5-aminolevulinic acid of bacteria in planktonic and biofilm forms.
    Bohm GC; Gándara L; Di Venosa G; Mamone L; Buzzola F; Casas A
    Biochem Pharmacol; 2020 Jul; 177():114016. PubMed ID: 32387459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence.
    Stummer W; Stocker S; Wagner S; Stepp H; Fritsch C; Goetz C; Goetz AE; Kiefmann R; Reulen HJ
    Neurosurgery; 1998 Mar; 42(3):518-25; discussion 525-6. PubMed ID: 9526986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic wound model for studying the behaviors of Pseudomonas aeruginosa in polymicrobial biofilms.
    Wright E; Neethirajan S; Weng X
    Biotechnol Bioeng; 2015 Nov; 112(11):2351-9. PubMed ID: 25994926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Point-of-care fluorescence imaging predicts the presence of pathogenic bacteria in wounds: a clinical study.
    Rennie MY; Lindvere-Teene L; Tapang K; Linden R
    J Wound Care; 2017 Aug; 26(8):452-460. PubMed ID: 28795890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [IMPACT OF BIOFILM ON HEALING AND A METHOD FOR IDENTIFYING IT IN THE WOUND].
    Skrlin J
    Acta Med Croatica; 2016 Mar; 70(1):29-32. PubMed ID: 27220187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of a multifaceted approach to characterizing the microbial flora of chronic wounds.
    Han A; Zenilman JM; Melendez JH; Shirtliff ME; Agostinho A; James G; Stewart PS; Mongodin EF; Rao D; Rickard AH; Lazarus GS
    Wound Repair Regen; 2011; 19(5):532-41. PubMed ID: 22092791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ALA induced photodynamic effects on gram positive and negative bacteria.
    Nitzan Y; Salmon-Divon M; Shporen E; Malik Z
    Photochem Photobiol Sci; 2004 May; 3(5):430-5. PubMed ID: 15122360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofilms in chronic wounds.
    James GA; Swogger E; Wolcott R; Pulcini Ed; Secor P; Sestrich J; Costerton JW; Stewart PS
    Wound Repair Regen; 2008; 16(1):37-44. PubMed ID: 18086294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial Contribution in Chronicity of Wounds.
    Rahim K; Saleha S; Zhu X; Huo L; Basit A; Franco OL
    Microb Ecol; 2017 Apr; 73(3):710-721. PubMed ID: 27742997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light.
    Ashkenazi H; Malik Z; Harth Y; Nitzan Y
    FEMS Immunol Med Microbiol; 2003 Jan; 35(1):17-24. PubMed ID: 12589953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-Aminolaevulinic acid (ALA) induced formation of different fluorescent porphyrins: a study of the biosynthesis of porphyrins by bacteria of the human digestive tract.
    Dietel W; Pottier R; Pfister W; Schleier P; Zinner K
    J Photochem Photobiol B; 2007 Jan; 86(1):77-86. PubMed ID: 16973372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH).
    Malic S; Hill KE; Hayes A; Percival SL; Thomas DW; Williams DW
    Microbiology (Reading); 2009 Aug; 155(Pt 8):2603-2611. PubMed ID: 19477903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ detection of ALA-stimulated porphyrin metabolic products in Escherichia coli B by fluorescence line narrowing spectroscopy.
    Szocs K; Csík G; Kaposi AD; Fidy J
    Biochim Biophys Acta; 2001 Dec; 1541(3):170-8. PubMed ID: 11755211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dorsal tongue porphyrin autofluorescence and Candida saprophytism: A prospective observational study.
    Petruzzi M; Della Vella F; Cassandro A; Mosca A; Di Comite M; Contaldo M; Grassi FR; Lauritano D
    PLoS One; 2019; 14(9):e0223072. PubMed ID: 31557235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm evidence and the microbial diversity of horse wounds.
    Freeman K; Woods E; Welsby S; Percival SL; Cochrane CA
    Can J Microbiol; 2009 Feb; 55(2):197-202. PubMed ID: 19295652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacokinetics of 5-aminolevulinic-acid-induced porphyrins in tumour-bearing mice.
    Sroka R; Beyer W; Gossner L; Sassy T; Stocker S; Baumgartner R
    J Photochem Photobiol B; 1996 Jun; 34(1):13-9. PubMed ID: 8765659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of porphyrins in oral bacteria by liquid chromatography electrospray ionization tandem mass spectrometry.
    Fyrestam J; Bjurshammar N; Paulsson E; Johannsen A; Östman C
    Anal Bioanal Chem; 2015 Sep; 407(23):7013-23. PubMed ID: 26168965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.