These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 32101225)

  • 1. Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation.
    Zhang C; Kong T; Fu Z; Zhang Z; Zheng H
    Nanoscale; 2020 Apr; 12(16):8768-8774. PubMed ID: 32101225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal-effect dominated plasmonic catalysis on silver nanoislands.
    Kong T; Kang B; Wang W; Deckert-Gaudig T; Zhang Z; Deckert V
    Nanoscale; 2024 Jun; 16(22):10745-10750. PubMed ID: 38738933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis.
    Peng T; Miao J; Gao Z; Zhang L; Gao Y; Fan C; Li D
    Small; 2018 Mar; 14(12):e1703510. PubMed ID: 29457350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis.
    Zhou L; Swearer DF; Zhang C; Robatjazi H; Zhao H; Henderson L; Dong L; Christopher P; Carter EA; Nordlander P; Halas NJ
    Science; 2018 Oct; 362(6410):69-72. PubMed ID: 30287657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Molecular Catalysis Identifying Activation Energy of the Intermediate Product and Rate-Limiting Step in Plasmonic Photocatalysis.
    Li W; Miao J; Peng T; Lv H; Wang JG; Li K; Zhu Y; Li D
    Nano Lett; 2020 Apr; 20(4):2507-2513. PubMed ID: 32182075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Plasmonic Hot Electron Energy on Ag Surface by Amine Coordination.
    Wang Y; Li Y; Yang X; Wang T; Du X; Zhu A; Xie W; Xie W
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318817. PubMed ID: 38224169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-Plasmon-Assisted Growth, Reshaping and Transformation of Nanomaterials.
    Zhang C; Qi J; Li Y; Han Q; Gao W; Wang Y; Dong J
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-spectrum nonmetallic plasmonic carriers for efficient isopropanol dehydration.
    Lu C; You D; Li J; Wen L; Li B; Guo T; Lou Z
    Nat Commun; 2022 Nov; 13(1):6984. PubMed ID: 36379947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting hot electrons from a plasmon nanohybrid system for the photoelectroreduction of CO
    Dey A; Silveira VR; Vadell RB; Lindblad A; Lindblad R; Shtender V; Görlin M; Sá J
    Commun Chem; 2024 Mar; 7(1):59. PubMed ID: 38509134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot plasmonic electron-driven catalytic reactions on patterned metal-insulator-metal nanostructures.
    Kim SM; Lee C; Goddeti KC; Park JY
    Nanoscale; 2017 Aug; 9(32):11667-11677. PubMed ID: 28776052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen evolution with hot electrons on a plasmonic-molecular catalyst hybrid system.
    Dey A; Mendalz A; Wach A; Vadell RB; Silveira VR; Leidinger PM; Huthwelker T; Shtender V; Novotny Z; Artiglia L; Sá J
    Nat Commun; 2024 Jan; 15(1):445. PubMed ID: 38200016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper-Based Plasmonic Catalysis: Recent Advances and Future Perspectives.
    Xin Y; Yu K; Zhang L; Yang Y; Yuan H; Li H; Wang L; Zeng J
    Adv Mater; 2021 Aug; 33(32):e2008145. PubMed ID: 34050979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoupling Plasmonic Hot Carrier from Thermal Catalysis via Electrode Engineering.
    Sekar P; Bericat-Vadell R; Patehebieke Y; Broqvist P; Wallentin CJ; Görlin M; Sá J
    Nano Lett; 2024 Jul; ():. PubMed ID: 38973705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confined Hot Electron Relaxation at the Molecular Heterointerface of the Size-Selected Plasmonic Noble Metal Nanocluster and Layered C
    Shibuta M; Yamamoto K; Ohta T; Inoue T; Mizoguchi K; Nakaya M; Eguchi T; Nakajima A
    ACS Nano; 2021 Jan; 15(1):1199-1209. PubMed ID: 33411503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of Chemical Reaction Pathways by Light-Matter Coupling.
    Devasia D; Das A; Mohan V; Jain PK
    Annu Rev Phys Chem; 2021 Apr; 72():423-443. PubMed ID: 33481640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic Boosting by Surface-Plasmon-Driven Hot Electrons on Antenna-Reactor Schottky Nanodiodes.
    Kang M; Jeon B; Park JY
    Nano Lett; 2023 Jun; 23(11):5116-5122. PubMed ID: 37265068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.