These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32101385)

  • 1. Parallel, Multi-Material Electrohydrodynamic 3D Nanoprinting.
    Chen M; Lee H; Yang J; Xu Z; Huang N; Chan BP; Kim JT
    Small; 2020 Apr; 16(13):e1906402. PubMed ID: 32101385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meniscus-on-Demand Parallel 3D Nanoprinting.
    Chen M; Xu Z; Kim JH; Seol SK; Kim JT
    ACS Nano; 2018 May; 12(5):4172-4177. PubMed ID: 29672027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drop-on-demand printing of carbon black ink by electrohydrodynamic jet printing.
    Back SY; Song CH; Yu S; Lee HJ; Kim BS; Yang NY; Jeong SH; Ahn H
    J Nanosci Nanotechnol; 2012 Jan; 12(1):446-50. PubMed ID: 22524000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional nanoprinting via charged aerosol jets.
    Jung W; Jung YH; Pikhitsa PV; Feng J; Yang Y; Kim M; Tsai HY; Tanaka T; Shin J; Kim KY; Choi H; Rho J; Choi M
    Nature; 2021 Apr; 592(7852):54-59. PubMed ID: 33790446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale.
    Reiser A; Lindén M; Rohner P; Marchand A; Galinski H; Sologubenko AS; Wheeler JM; Zenobi R; Poulikakos D; Spolenak R
    Nat Commun; 2019 Apr; 10(1):1853. PubMed ID: 31015443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Nanoprinting of Perovskites.
    Chen M; Yang J; Wang Z; Xu Z; Lee H; Lee H; Zhou Z; Feng SP; Lee S; Pyo J; Seol SK; Ki DK; Kim JT
    Adv Mater; 2019 Nov; 31(44):e1904073. PubMed ID: 31544295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Step Sub-micrometer-Scale Electrohydrodynamic Inkjet Three-Dimensional Printing Technique with Spontaneous Nanoscale Joule Heating.
    Zhang B; Seong B; Lee J; Nguyen V; Cho D; Byun D
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29965-29972. PubMed ID: 28806052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets.
    Galliker P; Schneider J; Eghlidi H; Kress S; Sandoghdar V; Poulikakos D
    Nat Commun; 2012 Jun; 3():890. PubMed ID: 22692533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of nanoscale nozzle for electrohydrodynamic (EHD) inkjet head and high precision patterning by drop-on-demand operation.
    Nguyen VD; Schrlau MG; Tran SB; Bau HH; Ko HS; Byun D
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7298-302. PubMed ID: 19908776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtip focused electrohydrodynamic jet printing with nanoscale resolution.
    Su S; Liang J; Wang Z; Xin W; Li X; Wang D
    Nanoscale; 2020 Dec; 12(48):24450-24462. PubMed ID: 33300927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Nanoprinting via Direct Delivery.
    Ventrici de Souza J; Liu Y; Wang S; Dörig P; Kuhl TL; Frommer J; Liu GY
    J Phys Chem B; 2018 Jan; 122(2):956-962. PubMed ID: 29120185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designs and applications of electrohydrodynamic 3D printing.
    Gao D; Zhou JG
    Int J Bioprint; 2019; 5(1):172. PubMed ID: 32782979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanodroplet Flight Control in Electrohydrodynamic Redox 3D Printing.
    Menétrey M; Zezulka L; Fandré P; Schmid F; Spolenak R
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1283-1292. PubMed ID: 38157367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mode-tunable, micro/nanoscale electrohydrodynamic deposition techniques for optoelectronic device fabrication.
    Duan Y; Li H; Yang W; Shao Z; Wang Q; Huang Y; Yin Z
    Nanoscale; 2022 Sep; 14(37):13452-13472. PubMed ID: 36082930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing.
    Lee H; Seong B; Kim J; Jang Y; Byun D
    Small; 2014 Oct; 10(19):3918-22. PubMed ID: 24925213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D electrohydrodynamic printing and characterisation of highly conductive gold nanowalls.
    Rohner P; Reiser A; Rabouw FT; Sologubenko AS; Norris DJ; Spolenak R; Poulikakos D
    Nanoscale; 2020 Oct; 12(39):20158-20164. PubMed ID: 32776025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Nanoprinting by Electron-Beam with an Ice Resist.
    Wu S; Zhao D; Qiu M
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1652-1658. PubMed ID: 34933558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro/nanoscale electrohydrodynamic printing: from 2D to 3D.
    Zhang B; He J; Li X; Xu F; Li D
    Nanoscale; 2016 Aug; 8(34):15376-88. PubMed ID: 27479715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Step, Continuous Three-Dimensional Printing of Multi-Stimuli-Responsive Bilayer Microactuators via a Double-Barreled Theta Pipette.
    Huan X; Lee S; Lee H; Xu Z; Yang J; Chen M; Liu Y; Kim JT
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43396-43403. PubMed ID: 34472833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing.
    Lee A; Jin H; Dang HW; Choi KH; Ahn KH
    Langmuir; 2013 Nov; 29(44):13630-9. PubMed ID: 24102618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.