These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 321016)

  • 1. Stabilization by the 30S ribosomal subunit of the interaction of 50S subunits with elongation factor G and guanine nucleotide.
    Marsh RC; Parmeggiani A
    Biochemistry; 1977 Apr; 16(7):1278-83. PubMed ID: 321016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the uncoupled GTPase activity of elongation factor G (EF-G) by the conformations of the ribosomal subunits.
    Nagel K; Voigt J
    Biochim Biophys Acta; 1993 Aug; 1174(2):153-61. PubMed ID: 8357832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the ribosome-dependent uncoupled GTPase reaction catalyzed by polypeptide chain elongation factor G.
    Arai N; Kaziro Y
    J Biochem; 1975 Feb; 77(2):439-47. PubMed ID: 165176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function of sulfhydryl groups in ribosome-elongation factor G reactions. Assignment of guanine nucleotide binding site to elongation factor G.
    Marsh RC; Chinali G; Parmeggiani A
    J Biol Chem; 1975 Nov; 250(21):8344-52. PubMed ID: 172495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elongation factor Tu ternary complex binds to small ribosomal subunits in a functionally active state.
    Langer JA; Jurnak F; Lake JA
    Biochemistry; 1984 Dec; 23(25):6171-8. PubMed ID: 6395891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity of the 30-S CsCl core in elongation-factor-dependent GTP hydrolysis.
    Sander G; Marsh RC; Parmeggiani A
    Eur J Biochem; 1976 Jan; 61(1):317-23. PubMed ID: 173554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of an inhibitor of ribosome-dependent GTP hydrolysis by elongation factor G.
    Voigt J; Nagel K
    Eur J Biochem; 1990 Dec; 194(2):579-85. PubMed ID: 2269283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium measurements of the interactions of guanine nucleotides with Escherichia coli elongation factor G and the ribosome.
    Baca OG; Rohrbach MS; Bodley JW
    Biochemistry; 1976 Oct; 15(21):4570-4. PubMed ID: 788779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of guanosine 5'-di- and -triphosphate derivatives with modified terminal phosphates: effect on ribosome-elongation factor G-dependent reactions.
    Eckstein F; Bruns W; Parmeggiani A
    Biochemistry; 1975 Nov; 14(23):5225-32. PubMed ID: 1103967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirement of proteins S5 and S9 from 30S subunits for the ribosome-dependent GTPase activity of elongation factor G.
    Marsh RC; Parmeggiani A
    Proc Natl Acad Sci U S A; 1973 Jan; 70(1):151-5. PubMed ID: 4346030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of adenosine diphosphate-ribosylated elongation factor 2 with ribosomes.
    Bermek E
    J Biol Chem; 1976 Nov; 251(21):6544-9. PubMed ID: 789367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosomes cannot interact simultaneously with elongation factors EF Tu and EF G.
    Richman N; Bodley JW
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):686-9. PubMed ID: 4551984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady state kinetic analysis of the mechanism of guanosine triphosphate hydrolysis catalyzed by Escherichia coli elongation factor G and the ribosome.
    Rohrback MS; Bodley JW
    Biochemistry; 1976 Oct; 15(21):4565-9. PubMed ID: 9976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of guanosine nucleotides with elongation factor 2. II. Effect of ribosomes and magnesium ions on guanosine diphosphate and guanosine triphosphate binding to the enzyme.
    Henriksen O; Robinson EA; Maxwell ES
    J Biol Chem; 1975 Jan; 250(2):725-30. PubMed ID: 1112785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the nature of the G-factor binding site on the 50S ribosomal subunit.
    Bodley JW; Lin L
    Biochemistry; 1972 Feb; 11(5):782-6. PubMed ID: 4551093
    [No Abstract]   [Full Text] [Related]  

  • 16. The formation of guanosine-nucleotide - elongation-factor-G - ribosome complexes on free 70-S ribosomes, 50-S subunits, and polysomes. A comparative study.
    San-Millán MJ; Vázquez D; Modolell J
    Eur J Biochem; 1977 May; 75(2):593-600. PubMed ID: 328279
    [No Abstract]   [Full Text] [Related]  

  • 17. Interactions of elongation factor 2 (EF-2) with guanine nucleotides and ribosomes. Binding of periodate-oxidized guanine nucleotides to EF-2.
    Nurten R; Bermek E
    Eur J Biochem; 1980 Feb; 103(3):551-5. PubMed ID: 6244163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the ribosomal properties required for formation of a GTPase active complex with the eukaryotic elongation factor 2.
    Nygård O; Nilsson L
    Eur J Biochem; 1989 Feb; 179(3):603-8. PubMed ID: 2537725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of guanosine triphosphate analogues with elongation factor G of Escherichia coli.
    Hamel E
    Eur J Biochem; 1976 Apr; 63(2):431-40. PubMed ID: 770173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ribosome modulates the structural dynamics of the conserved GTPase HflX and triggers tight nucleotide binding.
    Fischer JJ; Coatham ML; Bear SE; Brandon HE; De Laurentiis EI; Shields MJ; Wieden HJ
    Biochimie; 2012 Aug; 94(8):1647-59. PubMed ID: 22554723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.