These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 32101691)
1. Combining Alchemical Transformation with a Physical Pathway to Accelerate Absolute Binding Free Energy Calculations of Charged Ligands to Enclosed Binding Sites. Cruz J; Wickstrom L; Yang D; Gallicchio E; Deng N J Chem Theory Comput; 2020 Apr; 16(4):2803-2813. PubMed ID: 32101691 [TBL] [Abstract][Full Text] [Related]
2. Comparing alchemical and physical pathway methods for computing the absolute binding free energy of charged ligands. Deng N; Cui D; Zhang BW; Xia J; Cruz J; Levy R Phys Chem Chem Phys; 2018 Jun; 20(25):17081-17092. PubMed ID: 29896599 [TBL] [Abstract][Full Text] [Related]
3. Ligand Selectivity in the Recognition of Protoberberine Alkaloids by Hybrid-2 Human Telomeric G-Quadruplex: Binding Free Energy Calculation, Fluorescence Binding, and NMR Experiments. Deng N; Xia J; Wickstrom L; Lin C; Wang K; He P; Yin Y; Yang D Molecules; 2019 Apr; 24(8):. PubMed ID: 31010072 [TBL] [Abstract][Full Text] [Related]
4. Improving the Potential of Mean Force and Nonequilibrium Pulling Simulations by Simultaneous Alchemical Modifications. Reif MM; Zacharias M J Chem Theory Comput; 2022 Jun; 18(6):3873-3893. PubMed ID: 35653503 [TBL] [Abstract][Full Text] [Related]
5. Using Molecular Dynamics Free Energy Simulation to Compute Binding Affinities of DNA G-Quadruplex Ligands. Deng N Methods Mol Biol; 2019; 2035():177-199. PubMed ID: 31444750 [TBL] [Abstract][Full Text] [Related]
6. Developing end-point methods for absolute binding free energy calculation using the Boltzmann-quasiharmonic model. Wickstrom L; Gallicchio E; Chen L; Kurtzman T; Deng N Phys Chem Chem Phys; 2022 Mar; 24(10):6037-6052. PubMed ID: 35212338 [TBL] [Abstract][Full Text] [Related]
7. Resolving the Ligand-Binding Specificity in c-MYC G-Quadruplex DNA: Absolute Binding Free Energy Calculations and SPR Experiment. Deng N; Wickstrom L; Cieplak P; Lin C; Yang D J Phys Chem B; 2017 Nov; 121(46):10484-10497. PubMed ID: 29086571 [TBL] [Abstract][Full Text] [Related]
8. Absolute Protein Binding Free Energy Simulations for Ligands with Multiple Poses, a Thermodynamic Path That Avoids Exhaustive Enumeration of the Poses. Sakae Y; Zhang BW; Levy RM; Deng N J Comput Chem; 2020 Jan; 41(1):56-68. PubMed ID: 31621932 [TBL] [Abstract][Full Text] [Related]
9. Absolute Binding Free Energy Calculations for Buried Water Molecules. Ge Y; Baumann HM; Mobley DL J Chem Theory Comput; 2022 Nov; 18(11):6482-6499. PubMed ID: 36197451 [TBL] [Abstract][Full Text] [Related]
10. Improving Prediction Accuracy of Binding Free Energies and Poses of HIV Integrase Complexes Using the Binding Energy Distribution Analysis Method with Flattening Potentials. Xia J; Flynn W; Levy RM J Chem Inf Model; 2018 Jul; 58(7):1356-1371. PubMed ID: 29927237 [TBL] [Abstract][Full Text] [Related]
11. Absolute Binding Free Energy Calculations for Highly Flexible Protein MDM2 and Its Inhibitors. Singh N; Li W Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32635537 [TBL] [Abstract][Full Text] [Related]
12. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations. Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821 [TBL] [Abstract][Full Text] [Related]
13. Effect of the chemical environment of the DNA guanine quadruplex on the free energy of binding of Na and K ions. Sharawy M; Consta S J Chem Phys; 2018 Dec; 149(22):225102. PubMed ID: 30553268 [TBL] [Abstract][Full Text] [Related]
14. SAMPL7 TrimerTrip host-guest binding affinities from extensive alchemical and end-point free energy calculations. Huai Z; Yang H; Li X; Sun Z J Comput Aided Mol Des; 2021 Jan; 35(1):117-129. PubMed ID: 33037549 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Receptor-Ligand Restraint Schemes for Alchemical Absolute Binding Free Energy Calculations. Clark F; Robb G; Cole DJ; Michel J J Chem Theory Comput; 2023 Jun; 19(12):3686-3704. PubMed ID: 37285579 [TBL] [Abstract][Full Text] [Related]
16. Accounting for the Central Role of Interfacial Water in Protein-Ligand Binding Free Energy Calculations. Ben-Shalom IY; Lin Z; Radak BK; Lin C; Sherman W; Gilson MK J Chem Theory Comput; 2020 Dec; 16(12):7883-7894. PubMed ID: 33206520 [TBL] [Abstract][Full Text] [Related]
17. Relative Binding Free Energy Calculations for Ligands with Diverse Scaffolds with the Alchemical Transfer Method. Azimi S; Khuttan S; Wu JZ; Pal RK; Gallicchio E J Chem Inf Model; 2022 Jan; 62(2):309-323. PubMed ID: 34990555 [TBL] [Abstract][Full Text] [Related]
18. Binding Free Energies of Host-Guest Systems by Nonequilibrium Alchemical Simulations with Constrained Dynamics: Theoretical Framework. Giovannelli E; Procacci P; Cardini G; Pagliai M; Volkov V; Chelli R J Chem Theory Comput; 2017 Dec; 13(12):5874-5886. PubMed ID: 28992706 [TBL] [Abstract][Full Text] [Related]
19. The molecular mechanism of ligand unbinding from the human telomeric G-quadruplex by steered molecular dynamics and umbrella sampling simulations. Zhou JK; Yang DY; Sheu SY Phys Chem Chem Phys; 2015 May; 17(19):12857-69. PubMed ID: 25908641 [TBL] [Abstract][Full Text] [Related]
20. Implementation of the QUBE Force Field in SOMD for High-Throughput Alchemical Free-Energy Calculations. Nelson L; Bariami S; Ringrose C; Horton JT; Kurdekar V; Mey ASJS; Michel J; Cole DJ J Chem Inf Model; 2021 May; 61(5):2124-2130. PubMed ID: 33886305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]