These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32101717)

  • 21. Preparation of chemically modified RNA origami nanostructures.
    Endo M; Takeuchi Y; Emura T; Hidaka K; Sugiyama H
    Chemistry; 2014 Nov; 20(47):15330-3. PubMed ID: 25313942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Covalent Linkage of One-Dimensional DNA Arrays Bonded by Paranemic Cohesion.
    Ohayon YP; Sha R; Flint O; Liu W; Chakraborty B; Subramanian HK; Zheng J; Chandrasekaran AR; Abdallah HO; Wang X; Zhang X; Seeman NC
    ACS Nano; 2015 Oct; 9(10):10304-12. PubMed ID: 26343906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrophoretic mobility of supercoiled, catenated and knotted DNA molecules.
    Cebrián J; Kadomatsu-Hermosa MJ; Castán A; Martínez V; Parra C; Fernández-Nestosa MJ; Schaerer C; Martínez-Robles ML; Hernández P; Krimer DB; Stasiak A; Schvartzman JB
    Nucleic Acids Res; 2015 Feb; 43(4):e24. PubMed ID: 25414338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanopore translocation of topologically linked DNA catenanes.
    Rheaume SN; Klotz AR
    Phys Rev E; 2023 Feb; 107(2-1):024504. PubMed ID: 36932513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model carbyne vs ideal and DNA catenanes.
    Dobrowolski JC; Mazurek AP
    J Chem Inf Model; 2005; 45(4):1030-8. PubMed ID: 16045298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Programmed dynamic topologies in DNA catenanes.
    Elbaz J; Wang ZG; Wang F; Willner I
    Angew Chem Int Ed Engl; 2012 Mar; 51(10):2349-53. PubMed ID: 22287100
    [No Abstract]   [Full Text] [Related]  

  • 27. Complex wireframe DNA nanostructures from simple building blocks.
    Wang W; Chen S; An B; Huang K; Bai T; Xu M; Bellot G; Ke Y; Xiang Y; Wei B
    Nat Commun; 2019 Mar; 10(1):1067. PubMed ID: 30842408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A polycatenated DNA scaffold for the one-step assembly of hierarchical nanostructures.
    Weizmann Y; Braunschweig AB; Wilner OI; Cheglakov Z; Willner I
    Proc Natl Acad Sci U S A; 2008 Apr; 105(14):5289-94. PubMed ID: 18391204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topological Linkage of DNA Tiles Bonded by Paranemic Cohesion.
    Ohayon YP; Sha R; Flint O; Chandrasekaran AR; Abdallah HO; Wang T; Wang X; Zhang X; Seeman NC
    ACS Nano; 2015 Oct; 9(10):10296-303. PubMed ID: 26364680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monte Carlo analysis of the conformation of DNA catenanes.
    Vologodskii AV; Cozzarelli NR
    J Mol Biol; 1993 Aug; 232(4):1130-40. PubMed ID: 8371271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. E. coli and M. luteus DNA topoisomerase I can catalyze catenation of decatenation of double-stranded DNA rings.
    Tse Y; Wang JC
    Cell; 1980 Nov; 22(1 Pt 1):269-76. PubMed ID: 6253080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sedimentation and electrophoretic migration of DNA knots and catenanes.
    Vologodskii AV; Crisona NJ; Laurie B; Pieranski P; Katritch V; Dubochet J; Stasiak A
    J Mol Biol; 1998 Apr; 278(1):1-3. PubMed ID: 9571029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interlocked DNA Nanojoints for Reversible Thermal Sensing.
    Ma Y; Centola M; Keppner D; Famulok M
    Angew Chem Int Ed Engl; 2020 Jul; 59(30):12455-12459. PubMed ID: 32567796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical topology: applications to DNA recombination and replication.
    Wasserman SA; Cozzarelli NR
    Science; 1986 May; 232(4753):951-60. PubMed ID: 3010458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of topologically linked single-stranded DNA rings.
    Billen LP; Li Y
    Bioorg Chem; 2004 Dec; 32(6):582-98. PubMed ID: 15530998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The helical repeat of double-stranded DNA varies as a function of catenation and supercoiling.
    Wasserman SA; White JH; Cozzarelli NR
    Nature; 1988 Aug; 334(6181):448-50. PubMed ID: 3043227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-assembly of DNA rings from scaffold-free DNA tiles.
    Yang Y; Zhao Z; Zhang F; Nangreave J; Liu Y; Yan H
    Nano Lett; 2013 Apr; 13(4):1862-6. PubMed ID: 23530617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adjusting Linking Strands to Form Size-Controllable DNA Origami Rings.
    Chen C; Xu J; Shi X
    IEEE Trans Nanobioscience; 2020 Apr; 19(2):167-172. PubMed ID: 31905142
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One DNA strand homo-polymerizes into defined nanostructures.
    Li M; Zuo H; Yu J; Zhao X; Mao C
    Nanoscale; 2017 Aug; 9(30):10601-10605. PubMed ID: 28726950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies.
    Bush J; Singh S; Vargas M; Oktay E; Hu CH; Veneziano R
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.