These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 32102226)
1. Low Cycle Fatigue Life Evaluation of Notched Specimens Considering Strain Gradient. Qin S; Xiong Z; Ma Y; Zhang K Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32102226 [TBL] [Abstract][Full Text] [Related]
2. The Anisotropic Distortional Yield Surface Constitutive Model Based on the Chaboche Cyclic Plastic Model. Chen J; Zhang K; Kuang Z; Hu G; Song Q; Chang Y Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30759750 [TBL] [Abstract][Full Text] [Related]
3. Accumulation of Plastic Strain at Notch Root of Steel Specimens Undergoing Asymmetric Fatigue Cycles: Analysis and Simulation. Hatami F; Varvani-Farahani A Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984031 [TBL] [Abstract][Full Text] [Related]
4. Prediction of the Ultra-Low-Cycle Fatigue Damage of Q345qC Steel and its Weld Joint. Tian Q; Zhuge H; Xie X Materials (Basel); 2019 Dec; 12(23):. PubMed ID: 31816879 [TBL] [Abstract][Full Text] [Related]
5. Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity. Sajjad HM; Hanke S; Güler S; Ul Hassan H; Fischer A; Hartmaier A Materials (Basel); 2019 May; 12(11):. PubMed ID: 31159157 [TBL] [Abstract][Full Text] [Related]
6. The Shear Stress Determination in Tubular Specimens under Torsion in the Elastic-Plastic Strain Range from the Perspective of Fatigue Analysis. Seyda J; Pejkowski Ł; Skibicki D Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33297541 [TBL] [Abstract][Full Text] [Related]
7. Mechanical Properties of Aluminum Alloys under Low-Cycle Fatigue Loading. Zhao X; Li H; Chen T; Cao B; Li X Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31252548 [TBL] [Abstract][Full Text] [Related]
8. Fatigue Life Prediction of Notched Details Using SWT Model and LEFM-Based Approach. Hao R; Wen Z; Xin H; Lin W Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903056 [TBL] [Abstract][Full Text] [Related]
9. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression. Lee CS; Lee JM; Youn B; Kim HS; Shin JK; Goh TS; Lee JS J Mech Behav Biomed Mater; 2017 Jan; 65():213-223. PubMed ID: 27592290 [TBL] [Abstract][Full Text] [Related]
10. Modeling of LCF Behaviour on AISI316L Steel Applying the Armstrong-Frederick Kinematic Hardening Model. Pate SB; Dundulis G; Griskevicius P Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063685 [TBL] [Abstract][Full Text] [Related]
11. Influence of Strain Gradient on Fatigue Life of Carbon Steel for Pressure Vessels in Low-Cycle and High-Cycle Fatigue Regimes. Fujii T; Muhamad Azmi MSB; Tohgo K; Shimamura Y Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057164 [TBL] [Abstract][Full Text] [Related]
12. Failure Mechanism Research on Bending Fretting Fatigue of 6061-T6 Aluminum Alloy by Experiment and Finite Element Method. Ding J; Yang L; Liu W Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297294 [TBL] [Abstract][Full Text] [Related]
13. Source codes and simulation data for the finite element implementation of the conventional and localizing gradient damage methods in ABAQUS. Sarkar S; Singh IV; Mishra BK; Shedbale AS; Poh LH Data Brief; 2019 Oct; 26():104533. PubMed ID: 31667295 [TBL] [Abstract][Full Text] [Related]
14. Cyclic Plasticity and Low Cycle Fatigue of an AISI 316L Stainless Steel: Experimental Evaluation of Material Parameters for Durability Design. Pelegatti M; Lanzutti A; Salvati E; Srnec Novak J; De Bona F; Benasciutti D Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34199076 [TBL] [Abstract][Full Text] [Related]
15. Low-Cycle Fatigue Behavior and the Combined Cyclic Hardening Material Model of Plate-Shaped Zn-22Al Alloy for Seismic Dampers. Liu Z; Han J; Yang P Materials (Basel); 2024 May; 17(9):. PubMed ID: 38730947 [TBL] [Abstract][Full Text] [Related]
16. Investigation of Anisotropic Subsequent Yield Behavior for 45 Steel by the Distortional Yield Surface Constitutive Model. Chang Y; Kuang Z; Tang R; Chen J; Song Q Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32155944 [TBL] [Abstract][Full Text] [Related]
17. Strain Range Dependent Cyclic Hardening of 08Ch18N10T Stainless Steel-Experiments and Simulations. Fumfera J; Halama R; Procházka R; Gál P; Španiel M Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31861206 [TBL] [Abstract][Full Text] [Related]
18. Cyclic Tests of Smooth and Notched Specimens Subjected to Bending and Torsion Taking into Account the Effect of Mean Stress. Pawliczek R; Rozumek D Materials (Basel); 2020 May; 13(9):. PubMed ID: 32384608 [TBL] [Abstract][Full Text] [Related]
19. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds. Song W; Liu X; Berto F; Razavi SMJ Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29695140 [TBL] [Abstract][Full Text] [Related]
20. Improvement of Cyclic Void Growth Model for Ultra-Low Cycle Fatigue Prediction of Steel Bridge Piers. Li S; Xie X; Liao Y Materials (Basel); 2019 May; 12(10):. PubMed ID: 31100927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]