These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress. Filosa S; Fico A; Paglialunga F; Balestrieri M; Crooke A; Verde P; Abrescia P; Bautista JM; Martini G Biochem J; 2003 Mar; 370(Pt 3):935-43. PubMed ID: 12466018 [TBL] [Abstract][Full Text] [Related]
4. Long-range structural defects by pathogenic mutations in most severe glucose-6-phosphate dehydrogenase deficiency. Horikoshi N; Hwang S; Gati C; Matsui T; Castillo-Orellana C; Raub AG; Garcia AA; Jabbarpour F; Batyuk A; Broweleit J; Xiang X; Chiang A; Broweleit R; Vöhringer-Martinez E; Mochly-Rosen D; Wakatsuki S Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33468660 [TBL] [Abstract][Full Text] [Related]
5. Allosteric role of a structural NADP Wei X; Kixmoeller K; Baltrusaitis E; Yang X; Marmorstein R Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2119695119. PubMed ID: 35858355 [TBL] [Abstract][Full Text] [Related]
6. [Glucose 6-phosphate dehydrogenase deficiency: a protection against malaria and a risk for hemolytic accidents]. Wajcman H; Galactéros F C R Biol; 2004 Aug; 327(8):711-20. PubMed ID: 15506519 [TBL] [Abstract][Full Text] [Related]
7. A computational study of structural analysis of Class I human glucose-6-phosphate dehydrogenase (G6PD) variants: Elaborating the correlation to chronic non-spherocytic hemolytic anemia (CNSHA). Alakbaree M; Abdulsalam AH; Ahmed HH; Ali FH; Al-Hili A; Omar MSS; Alonazi M; Jamalis J; Latif NA; Hamza MA; Amran SI Comput Biol Chem; 2023 Jun; 104():107873. PubMed ID: 37141793 [TBL] [Abstract][Full Text] [Related]
8. G6PD plays a neuroprotective role in brain ischemia through promoting pentose phosphate pathway. Cao L; Zhang D; Chen J; Qin YY; Sheng R; Feng X; Chen Z; Ding Y; Li M; Qin ZH Free Radic Biol Med; 2017 Nov; 112():433-444. PubMed ID: 28823591 [TBL] [Abstract][Full Text] [Related]
9. Glucose-6-phosphate dehydrogenase, glutathione peroxidase, total glutatione and reduced nicotinamide adenine dinucleotide phosphate in milk cells of subclinical mastitic cows. Akalin PP; Ergün Y; Başpinar N; Doğruer G; Küçükgül A; Cantekin Z; İşgör M; Saribay M; Koldaş E; Baştan A; Salar S; Pehlivanlar S Pol J Vet Sci; 2019 Jun; 22(2):271-278. PubMed ID: 31269353 [TBL] [Abstract][Full Text] [Related]
12. Glucose-6-phosphate dehydrogenase--from oxidative stress to cellular functions and degenerative diseases. Ho HY; Cheng ML; Chiu DT Redox Rep; 2007; 12(3):109-18. PubMed ID: 17623517 [TBL] [Abstract][Full Text] [Related]
13. Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation. Tuttle S; Stamato T; Perez ML; Biaglow J Radiat Res; 2000 Jun; 153(6):781-7. PubMed ID: 10825753 [TBL] [Abstract][Full Text] [Related]
14. Expanding the clinical and genetic spectrum of G6PD deficiency: The occurrence of BCGitis and novel missense mutation. Khan TA; Mazhar H; Nawaz M; Kalsoom K; Ishfaq M; Asif H; Rahman H; Qasim M; Naz F; Hussain M; Khattak B; Ullah W; Cabral-Marques O; Butt J; Iqbal A Microb Pathog; 2017 Jan; 102():160-165. PubMed ID: 27914961 [TBL] [Abstract][Full Text] [Related]
15. Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver. Frederiks WM; Vizan P; Bosch KS; Vreeling-Sindelárová H; Boren J; Cascante M Int J Exp Pathol; 2008 Aug; 89(4):232-40. PubMed ID: 18422600 [TBL] [Abstract][Full Text] [Related]
16. A computational study of structural differences of binding of NADP Sirdah M; Reading NS; Vankayalapati H; Prchal JT Blood Cells Mol Dis; 2021 Jul; 89():102572. PubMed ID: 33957359 [TBL] [Abstract][Full Text] [Related]
17. Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency. Au SW; Gover S; Lam VM; Adams MJ Structure; 2000 Mar; 8(3):293-303. PubMed ID: 10745013 [TBL] [Abstract][Full Text] [Related]
18. The effect of brimonidine and proparacaine on metabolic enzymes: Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase. Çalışkan B; Öztürk Kesebir A; Demir Y; Akyol Salman İ Biotechnol Appl Biochem; 2022 Feb; 69(1):281-288. PubMed ID: 33438819 [TBL] [Abstract][Full Text] [Related]
19. Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells. Aurora AB; Khivansara V; Leach A; Gill JG; Martin-Sandoval M; Yang C; Kasitinon SY; Bezwada D; Tasdogan A; Gu W; Mathews TP; Zhao Z; DeBerardinis RJ; Morrison SJ Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35110412 [TBL] [Abstract][Full Text] [Related]
20. TRAF6-Mediated SM22α K21 Ubiquitination Promotes G6PD Activation and NADPH Production, Contributing to GSH Homeostasis and VSMC Survival In Vitro and In Vivo. Dong LH; Li L; Song Y; Duan ZL; Sun SG; Lin YL; Miao SB; Yin YJ; Shu YN; Li H; Chen P; Zhao LL; Han M Circ Res; 2015 Sep; 117(8):684-94. PubMed ID: 26291555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]