BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32102256)

  • 1. The Effect of Thermomechanical Pretreatment on the Structure and Properties of Lignin-Rich Plant Biomass.
    Podgorbunskikh EM; Bychkov AL; Ryabchikova EI; Lomovsky OI
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32102256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue specific response of Miscanthus×giganteus to dilute acid pretreatment for enhancing cellulose digestibility.
    Ji Z; Zhang X; Ling Z; Sun RC; Xu F
    Carbohydr Polym; 2016 Dec; 154():247-56. PubMed ID: 27577916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current achievements in the mechanically pretreated conversion of plant biomass.
    Bychkov A; Podgorbunskikh E; Bychkova E; Lomovsky O
    Biotechnol Bioeng; 2019 May; 116(5):1231-1244. PubMed ID: 30659596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of single stage- and two stage pretreatment in biomass with different lignin content.
    Kärcher MA; Iqbal Y; Lewandowski I; Senn T
    Bioresour Technol; 2016 Jul; 211():787-91. PubMed ID: 27067673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose.
    Ko JK; Kim Y; Ximenes E; Ladisch MR
    Biotechnol Bioeng; 2015 Feb; 112(2):252-62. PubMed ID: 25082660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breeding Targets to Improve Biomass Quality in Miscanthus.
    van der Cruijsen K; Al Hassan M; van Erven G; Dolstra O; Trindade LM
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33419100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a steam explosion pretreatment on sugar production by enzymatic hydrolysis and structural properties of reed straw.
    Hu Q; Su X; Tan L; Liu X; Wu A; Su D; Tian K; Xiong X
    Biosci Biotechnol Biochem; 2013; 77(11):2181-7. PubMed ID: 24200776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin.
    Foster CE; Martin TM; Pauly M
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20224547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergetic Dissolution of Branched Xylan and Lignin Opens the Way for Enzymatic Hydrolysis of Poplar Cell Wall.
    Zhou X; Ding D; You T; Zhang X; Takabe K; Xu F
    J Agric Food Chem; 2018 Apr; 66(13):3449-3456. PubMed ID: 29553741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved pretreatment of lignocellulosic biomass using enzymatically-generated peracetic acid.
    Yin DT; Jing Q; AlDajani WW; Duncan S; Tschirner U; Schilling J; Kazlauskas RJ
    Bioresour Technol; 2011 Apr; 102(8):5183-92. PubMed ID: 21345668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels.
    Zeng Y; Zhao S; Yang S; Ding SY
    Curr Opin Biotechnol; 2014 Jun; 27():38-45. PubMed ID: 24863895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass.
    Mora-Pale M; Meli L; Doherty TV; Linhardt RJ; Dordick JS
    Biotechnol Bioeng; 2011 Jun; 108(6):1229-45. PubMed ID: 21337342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on enzymatic hydrolysis efficiency and physicochemical properties of cellulose and lignocellulose after pretreatment with electron beam irradiation.
    Fei X; Jia W; Wang J; Chen T; Ling Y
    Int J Biol Macromol; 2020 Feb; 145():733-739. PubMed ID: 31887387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An effective chemical pretreatment method for lignocellulosic biomass with substituted imidazoles.
    Kang Y; Realff MJ; Sohn M; Lee JH; Bommarius AS
    Biotechnol Prog; 2015; 31(1):25-34. PubMed ID: 25311613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis.
    Siripong P; Duangporn P; Takata E; Tsutsumi Y
    Bioresour Technol; 2016 Mar; 203():303-8. PubMed ID: 26744804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water sorption in pretreated grasses as a predictor of enzymatic hydrolysis yields.
    Williams DL; Crowe JD; Ong RG; Hodge DB
    Bioresour Technol; 2017 Dec; 245(Pt A):242-249. PubMed ID: 28892697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pretreatment severity on the cellulose and lignin isolated from Salix using ionoSolv pretreatment.
    Weigand L; Mostame S; Brandt-Talbot A; Welton T; Hallett JP
    Faraday Discuss; 2017 Sep; 202():331-349. PubMed ID: 28718847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deconstruction of lignocellulosic biomass to fuels and chemicals.
    Chundawat SP; Beckham GT; Himmel ME; Dale BE
    Annu Rev Chem Biomol Eng; 2011; 2():121-45. PubMed ID: 22432613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment.
    Donohoe BS; Decker SR; Tucker MP; Himmel ME; Vinzant TB
    Biotechnol Bioeng; 2008 Dec; 101(5):913-25. PubMed ID: 18781690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.
    Gu T; Held MA; Faik A
    Environ Technol; 2013; 34(13-16):1735-49. PubMed ID: 24350431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.