These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32102288)

  • 1. An Enhanced Three-Dimensional Auxetic Lattice Structure with Improved Property.
    Xue Y; Gao P; Zhou L; Han F
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32102288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Idealized 3D Auxetic Mechanical Metamaterial: An Analytical, Numerical, and Experimental Study.
    Ghavidelnia N; Bodaghi M; Hedayati R
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the Orthotropic Behavior in an Auxetic Structure Based on a Novel Design Parameter of a Square Cell with Re-Entrant Struts.
    Valle R; Pincheira G; Tuninetti V; Garrido C; Treviño C; Morales J
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4D Printing of NiTi Auxetic Structure with Improved Ballistic Performance.
    Hassanin H; Abena A; Elsayed MA; Essa K
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and evaluation of 3D-printed auxetic structures coated by CWPU/graphene as strain sensor.
    Choi HY; Shin EJ; Lee SH
    Sci Rep; 2022 May; 12(1):7780. PubMed ID: 35546596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxetic B
    Wang B; Wu Q; Zhang Y; Ma L; Wang J
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33231-33237. PubMed ID: 31436953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing of Auxetic Metamaterials with Digitally Reprogrammable Shape.
    Lei M; Hong W; Zhao Z; Hamel C; Chen M; Lu H; Qi HJ
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22768-22776. PubMed ID: 31140776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Crushing Analysis of a Three-Dimensional Re-Entrant Auxetic Cellular Structure.
    Wang T; Li Z; Wang L; Ma Z; Hulbert GM
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30717257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-Plane Mechanical Behavior of a New Star-Re-Entrant Hierarchical Metamaterial.
    Zhang W; Zhao S; Sun R; Scarpa F; Wang J
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31277244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printed Auxetic Mechanical Metamaterial with Chiral Cells and Re-entrant Cores.
    Jiang Y; Li Y
    Sci Rep; 2018 Feb; 8(1):2397. PubMed ID: 29402940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite Element Analysis of Three-Dimensional (3D) Auxetic Textile Composite under Compression.
    Zeng J; Hu H
    Polymers (Basel); 2018 Mar; 10(4):. PubMed ID: 30966409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Properties of Auxetic Cellular Material Consisting of Re-Entrant Hexagonal Honeycombs.
    Zhang X; Yang D
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue performance of auxetic meta-biomaterials.
    Kolken HMA; Garcia AF; Du Plessis A; Rans C; Mirzaali MJ; Zadpoor AA
    Acta Biomater; 2021 May; 126():511-523. PubMed ID: 33711528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Characterization of Asymmetric Cell Structure of Auxetic Material for Predictable Directional Mechanical Response.
    Valle R; Pincheira G; Tuninetti V; Fernandez E; Uribe-Lam E
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femur Auxetic Meta-Implants with Tuned Micromotion Distribution.
    Ghavidelnia N; Bodaghi M; Hedayati R
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33383895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-Entrant Honeycomb Auxetic Structure with Enhanced Directional Properties.
    Mustahsan F; Khan SZ; Zaidi AA; Alahmadi YH; Mahmoud ERI; Almohamadi H
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing out-of-plane deformation to design 3D architected lattice metamaterials with tunable Poisson's ratio.
    Li T; Hu X; Chen Y; Wang L
    Sci Rep; 2017 Aug; 7(1):8949. PubMed ID: 28827585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extremely Non-Auxetic Behavior of a Typical Auxetic Microstructure Due to Its Material Properties.
    Bilski M; Wojciechowski KW; Stręk T; Kędziora P; Grima-Cornish JN; Dudek MR
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative Poisson's ratio in 1T-type crystalline two-dimensional transition metal dichalcogenides.
    Yu L; Yan Q; Ruzsinszky A
    Nat Commun; 2017 May; 8():15224. PubMed ID: 28541270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, molecular dynamics simulation, and investigation of the mechanical behavior of DNA origami nanotubes with auxetic and honeycomb structures.
    Mogheiseh M; Etemadi E; Hasanzadeh Ghasemi R
    J Biomol Struct Dyn; 2023; 41(24):14822-14831. PubMed ID: 36889931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.