These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32102359)

  • 1. Perceptions and Misconceptions in Molecular Recognition: Key Factors in Self-Assembling Multivalent (SAMul) Ligands/Polyanions Selectivity.
    Marson D; Laurini E; Aulic S; Fermeglia M; Pricl S
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32102359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembled Multivalent (SAMul) Polyanion Binding-Impact of Hydrophobic Modifications in the Micellar Core on DNA and Heparin Binding at the Peripheral Cationic Ligands.
    Albanyan B; Laurini E; Posocco P; Pricl S; Smith DK
    Chemistry; 2017 May; 23(26):6391-6397. PubMed ID: 28317184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled multivalent (SAMul) ligand systems with enhanced stability in the presence of human serum.
    Tena-Solsona M; Marson D; Rodrigo AC; Bromfield SM; Escuder B; Miravet JF; Apostolova N; Laurini E; Pricl S; Smith DK
    Biomater Sci; 2019 Aug; 7(9):3812-3820. PubMed ID: 31264671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heparin versus DNA: Chiral Preferences in Polyanion Binding to Self-Assembled Multivalent (SAMul) Nanostructures.
    Bromfield SM; Smith DK
    J Am Chem Soc; 2015 Aug; 137(32):10056-9. PubMed ID: 26258843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantiomeric and Diastereomeric Self-Assembled Multivalent Nanostructures: Understanding the Effects of Chirality on Binding to Polyanionic Heparin and DNA.
    Thornalley KA; Laurini E; Pricl S; Smith DK
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8530-8534. PubMed ID: 29761907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of buffer at nanoscale molecular recognition interfaces - electrostatic binding of biological polyanions.
    Rodrigo AC; Laurini E; Vieira VMP; Pricl S; Smith DK
    Chem Commun (Camb); 2017 Oct; 53(84):11580-11583. PubMed ID: 28990600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic binding of polyanions using self-assembled multivalent (SAMul) ligand displays - structure-activity effects on DNA/heparin binding.
    Fechner LE; Albanyan B; Vieira VMP; Laurini E; Posocco P; Pricl S; Smith DK
    Chem Sci; 2016 Jul; 7(7):4653-4659. PubMed ID: 30155113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-degradable responsive self-assembled multivalent arrays--temporary nanoscale recognition between dendrons and DNA.
    Barnard A; Posocco P; Fermeglia M; Tschiche A; Calderon M; Pricl S; Smith DK
    Org Biomol Chem; 2014 Jan; 12(3):446-55. PubMed ID: 24263553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides.
    Yang G; Zheng W; Tao G; Wu L; Zhou QF; Kochovski Z; Ji T; Chen H; Li X; Lu Y; Ding HM; Yang HB; Chen G; Jiang M
    ACS Nano; 2019 Nov; 13(11):13474-13485. PubMed ID: 31651143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and self-assembly of DNA-chromophore hybrid amphiphiles.
    Albert SK; Golla M; Thelu HV; Krishnan N; Deepak P; Varghese R
    Org Biomol Chem; 2016 Aug; 14(29):6960-9. PubMed ID: 27241196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembled Cationic β-Cyclodextrin Nanostructures for siRNA Delivery.
    Singh RP; Hidalgo T; Cazade PA; Darcy R; Cronin MF; Dorin I; O'Driscoll CM; Thompson D
    Mol Pharm; 2019 Mar; 16(3):1358-1366. PubMed ID: 30721074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphiphilic Peptide Self-Assembly: Expansion to Hybrid Materials.
    Mikhalevich V; Craciun I; Kyropoulou M; Palivan CG; Meier W
    Biomacromolecules; 2017 Nov; 18(11):3471-3480. PubMed ID: 28776980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications.
    Jin H; Huang W; Zhu X; Zhou Y; Yan D
    Chem Soc Rev; 2012 Sep; 41(18):5986-97. PubMed ID: 22797315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Self-Assembly of Amphiphilic Random Copolymers into Folded Micelles and Nanostructure Materials.
    Terashima T
    J Oleo Sci; 2020 Jun; 69(6):529-538. PubMed ID: 32404554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of hydrophobicity to thermodynamics of ligand-DNA binding and DNA collapse.
    Patel MM; Anchordoquy TJ
    Biophys J; 2005 Mar; 88(3):2089-103. PubMed ID: 15653734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From fundamental supramolecular chemistry to self-assembled nanomaterials and medicines and back again - how Sam inspired SAMul.
    Smith DK
    Chem Commun (Camb); 2018 May; 54(38):4743-4760. PubMed ID: 29696286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergy of Two Assembly Languages in DNA Nanostructures: Self-Assembly of Sequence-Defined Polymers on DNA Cages.
    Chidchob P; Edwardson TG; Serpell CJ; Sleiman HF
    J Am Chem Soc; 2016 Apr; 138(13):4416-25. PubMed ID: 26998893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and binding affinity of DNA/chitosan complexes by polyanion competition.
    Ma PL; Lavertu M; Winnik FM; Buschmann MD
    Carbohydr Polym; 2017 Nov; 176():167-176. PubMed ID: 28927595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly: from amphiphiles to chromophores and beyond.
    Hill JP; Shrestha LK; Ishihara S; Ji Q; Ariga K
    Molecules; 2014 Jun; 19(6):8589-609. PubMed ID: 24959684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.