These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
462 related articles for article (PubMed ID: 32102816)
1. Using a machine learning approach to predict mortality in critically ill influenza patients: a cross-sectional retrospective multicentre study in Taiwan. Hu CA; Chen CM; Fang YC; Liang SJ; Wang HC; Fang WF; Sheu CC; Perng WC; Yang KY; Kao KC; Wu CL; Tsai CS; Lin MY; Chao WC; BMJ Open; 2020 Feb; 10(2):e033898. PubMed ID: 32102816 [TBL] [Abstract][Full Text] [Related]
2. Explainable Machine Learning to Predict Successful Weaning Among Patients Requiring Prolonged Mechanical Ventilation: A Retrospective Cohort Study in Central Taiwan. Lin MY; Li CC; Lin PH; Wang JL; Chan MC; Wu CL; Chao WC Front Med (Lausanne); 2021; 8():663739. PubMed ID: 33968967 [No Abstract] [Full Text] [Related]
3. Explainable machine learning to predict long-term mortality in critically ill ventilated patients: a retrospective study in central Taiwan. Chan MC; Pai KC; Su SA; Wang MS; Wu CL; Chao WC BMC Med Inform Decis Mak; 2022 Mar; 22(1):75. PubMed ID: 35337303 [TBL] [Abstract][Full Text] [Related]
4. Explainable machine learning approach to predict extubation in critically ill ventilated patients: a retrospective study in central Taiwan. Pai KC; Su SA; Chan MC; Wu CL; Chao WC BMC Anesthesiol; 2022 Nov; 22(1):351. PubMed ID: 36376785 [TBL] [Abstract][Full Text] [Related]
5. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit. Huang T; Le D; Yuan L; Xu S; Peng X PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342 [TBL] [Abstract][Full Text] [Related]
6. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. Kong G; Lin K; Hu Y BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381 [TBL] [Abstract][Full Text] [Related]
7. A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study. Wang J; Chen H; Wang H; Liu W; Peng D; Zhao Q; Xiao M J Med Internet Res; 2023 Apr; 25():e43815. PubMed ID: 37023416 [TBL] [Abstract][Full Text] [Related]
8. Predicting sepsis in-hospital mortality with machine learning: a multi-center study using clinical and inflammatory biomarkers. Zhang G; Shao F; Yuan W; Wu J; Qi X; Gao J; Shao R; Tang Z; Wang T Eur J Med Res; 2024 Mar; 29(1):156. PubMed ID: 38448999 [TBL] [Abstract][Full Text] [Related]
9. Association of day 4 cumulative fluid balance with mortality in critically ill patients with influenza: A multicenter retrospective cohort study in Taiwan. Chao WC; Tseng CH; Chien YC; Sheu CC; Tsai MJ; Fang WF; Chen YM; Kao KC; Hu HC; Perng WC; Yang KY; Chen WC; Liang SJ; Wu CL; Wang HC; Chan MC; PLoS One; 2018; 13(1):e0190952. PubMed ID: 29315320 [TBL] [Abstract][Full Text] [Related]
10. Development of interpretable machine learning models to predict in-hospital prognosis of acute heart failure patients. Tanaka M; Kohjitani H; Yamamoto E; Morimoto T; Kato T; Yaku H; Inuzuka Y; Tamaki Y; Ozasa N; Seko Y; Shiba M; Yoshikawa Y; Yamashita Y; Kitai T; Taniguchi R; Iguchi M; Nagao K; Kawai T; Komasa A; Kawase Y; Morinaga T; Toyofuku M; Furukawa Y; Ando K; Kadota K; Sato Y; Kuwahara K; Okuno Y; Kimura T; Ono K; ESC Heart Fail; 2024 Oct; 11(5):2798-2812. PubMed ID: 38751135 [TBL] [Abstract][Full Text] [Related]
11. An explainable machine learning-based model to predict intensive care unit admission among patients with community-acquired pneumonia and connective tissue disease. Huang D; Gong L; Wei C; Wang X; Liang Z Respir Res; 2024 Jun; 25(1):246. PubMed ID: 38890628 [TBL] [Abstract][Full Text] [Related]
12. Machine learning algorithm to predict the in-hospital mortality in critically ill patients with chronic kidney disease. Li X; Zhu Y; Zhao W; Shi R; Wang Z; Pan H; Wang D Ren Fail; 2023 Dec; 45(1):2212790. PubMed ID: 37203863 [TBL] [Abstract][Full Text] [Related]
13. Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach. Fan Z; Jiang J; Xiao C; Chen Y; Xia Q; Wang J; Fang M; Wu Z; Chen F J Transl Med; 2023 Jun; 21(1):406. PubMed ID: 37349774 [TBL] [Abstract][Full Text] [Related]
14. AKIML Sun T; Yue X; Zhang G; Lin Q; Chen X; Huang T; Li X; Liu W; Tao Z Clin Chim Acta; 2024 Jun; 559():119705. PubMed ID: 38702035 [TBL] [Abstract][Full Text] [Related]
15. Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation. Liu X; Hu P; Yeung W; Zhang Z; Ho V; Liu C; Dumontier C; Thoral PJ; Mao Z; Cao D; Mark RG; Zhang Z; Feng M; Li D; Celi LA Lancet Digit Health; 2023 Oct; 5(10):e657-e667. PubMed ID: 37599147 [TBL] [Abstract][Full Text] [Related]
16. Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models. Huang J; Jin W; Duan X; Liu X; Shu T; Fu L; Deng J; Chen H; Liu G; Jiang Y; Liu Z Front Public Health; 2022; 10():1086339. PubMed ID: 36711330 [TBL] [Abstract][Full Text] [Related]
17. A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world study. Liu Y; Gao K; Deng H; Ling T; Lin J; Yu X; Bo X; Zhou J; Gao L; Wang P; Hu J; Zhang J; Tong Z; Liu Y; Shi Y; Ke L; Gao Y; Li W Int J Med Inform; 2022 Jul; 163():104776. PubMed ID: 35512625 [TBL] [Abstract][Full Text] [Related]
18. Machine learning algorithm for predict the in-hospital mortality in critically ill patients with congestive heart failure combined with chronic kidney disease. Li X; Wang Z; Zhao W; Shi R; Zhu Y; Pan H; Wang D Ren Fail; 2024 Dec; 46(1):2315298. PubMed ID: 38357763 [TBL] [Abstract][Full Text] [Related]
19. Machine-learning models are superior to severity scoring systems for the prediction of the mortality of critically ill patients in a tertiary medical center. Chou RH; Hsu BW; Yu CL; Chen TY; Ou SM; Lee KH; Tseng VS; Huang PH; Tarng DC J Chin Med Assoc; 2024 Apr; 87(4):369-376. PubMed ID: 38334988 [TBL] [Abstract][Full Text] [Related]
20. An interpretable machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury. Wen C; Zhang X; Li Y; Xiao W; Hu Q; Lei X; Xu T; Liang S; Gao X; Zhang C; Yu Z; Lü M PLoS One; 2024; 19(5):e0303469. PubMed ID: 38768153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]