These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 32103027)

  • 1. Fatigue-resistant adhesion of hydrogels.
    Liu J; Lin S; Liu X; Qin Z; Yang Y; Zang J; Zhao X
    Nat Commun; 2020 Feb; 11(1):1071. PubMed ID: 32103027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tough bonding of hydrogels to diverse non-porous surfaces.
    Yuk H; Zhang T; Lin S; Parada GA; Zhao X
    Nat Mater; 2016 Feb; 15(2):190-6. PubMed ID: 26552058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically-Compliant Bioelectronic Interfaces through Fatigue-Resistant Conducting Polymer Hydrogel Coating.
    Xue Y; Chen X; Wang F; Lin J; Liu J
    Adv Mater; 2023 Oct; 35(40):e2304095. PubMed ID: 37381603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polylysine-modified PEG-based hydrogels to enhance the neuro-electrode interface.
    Rao SS; Han N; Winter JO
    J Biomater Sci Polym Ed; 2011; 22(4-6):611-25. PubMed ID: 20566048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres.
    Xue B; Bashir Z; Guo Y; Yu W; Sun W; Li Y; Zhang Y; Qin M; Wang W; Cao Y
    Nat Commun; 2023 May; 14(1):2583. PubMed ID: 37142590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures.
    Yuk H; Zhang T; Parada GA; Liu X; Zhao X
    Nat Commun; 2016 Jun; 7():12028. PubMed ID: 27345380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.
    Li F; Wang A; Wang C
    J Mater Sci Mater Med; 2016 May; 27(5):87. PubMed ID: 26970769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers.
    Lei H; Dong L; Li Y; Zhang J; Chen H; Wu J; Zhang Y; Fan Q; Xue B; Qin M; Chen B; Cao Y; Wang W
    Nat Commun; 2020 Aug; 11(1):4032. PubMed ID: 32788575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications.
    Lindberg GCJ; Longoni A; Lim KS; Rosenberg AJ; Hooper GJ; Gawlitta D; Woodfield TBF
    Acta Biomater; 2019 Feb; 85():117-130. PubMed ID: 30572166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent-Exchange-Assisted Wet Annealing: A New Strategy for Superstrong, Tough, Stretchable, and Anti-Fatigue Hydrogels.
    Wu Y; Zhang Y; Wu H; Wen J; Zhang S; Xing W; Zhang H; Xue H; Gao J; Mai Y
    Adv Mater; 2023 Apr; 35(15):e2210624. PubMed ID: 36648109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen Bonds-Pinned Entanglement Blunting the Interfacial Crack of Hydrogel-Elastomer Hybrids.
    Wang Z; Yang F; Liu X; Han X; Li X; Huyan C; Liu D; Chen F
    Adv Mater; 2024 Apr; 36(14):e2313177. PubMed ID: 38272488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flaw-Insensitive Hydrogels under Static and Cyclic Loads.
    Bai R; Yang J; Morelle XP; Suo Z
    Macromol Rapid Commun; 2019 Apr; 40(8):e1800883. PubMed ID: 30740821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of thermoresponsive, photocrosslinkable hydrogels derived from decellularized tendon and cartilage extracellular matrix for cartilage tissue engineering.
    Rothrauff BB; Coluccino L; Gottardi R; Ceseracciu L; Scaglione S; Goldoni L; Tuan RS
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e159-e170. PubMed ID: 28486778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties.
    Zhao X; Chen X; Yuk H; Lin S; Liu X; Parada G
    Chem Rev; 2021 Apr; 121(8):4309-4372. PubMed ID: 33844906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell adhesion and accelerated detachment on the surface of temperature-sensitive chitosan and poly(N-isopropylacrylamide) hydrogels.
    Wang J; Chen L; Zhao Y; Guo G; Zhang R
    J Mater Sci Mater Med; 2009 Feb; 20(2):583-90. PubMed ID: 18853241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled rosette nanotube/hydrogel composites for cartilage tissue engineering.
    Chen Y; Bilgen B; Pareta RA; Myles AJ; Fenniri H; Ciombor DM; Aaron RK; Webster TJ
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1233-43. PubMed ID: 20184414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels.
    Liang X; Chen G; Lin S; Zhang J; Wang L; Zhang P; Lan Y; Liu J
    Adv Mater; 2022 Feb; 34(8):e2107106. PubMed ID: 34888962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-hydroxyapatite enhanced double network hydrogels with excellent mechanical properties for potential application in cartilage repair.
    Gan S; Lin W; Zou Y; Xu B; Zhang X; Zhao J; Rong J
    Carbohydr Polym; 2020 Feb; 229():115523. PubMed ID: 31826442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretchable Hydrogels with Low Hysteresis and High Fracture Toughness for Flexible Electronics.
    Guo X; Li J; Wang J; Huang L; Cheng G; Zhang Q; Zhu H; Zhang M; Zhu S
    Macromol Rapid Commun; 2022 Feb; 43(4):e2100716. PubMed ID: 34962018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing silk hydrogel and its applications in biomedical materials.
    Wang HY; Zhang YQ
    Biotechnol Prog; 2015; 31(3):630-40. PubMed ID: 25740113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.