These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 32103077)
1. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Abol-Fotouh D; Hassan MA; Shokry H; Roig A; Azab MS; Kashyout AEB Sci Rep; 2020 Feb; 10(1):3491. PubMed ID: 32103077 [TBL] [Abstract][Full Text] [Related]
2. Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20. Khan H; Saroha V; Raghuvanshi S; Bharti AK; Dutt D Carbohydr Polym; 2021 May; 260():117807. PubMed ID: 33712153 [TBL] [Abstract][Full Text] [Related]
3. Cellulosic Nanomaterial Production Via Fermentation by Park MS; Jung YH; Oh SY; Kim MJ; Bang WY; Lim YW J Microbiol Biotechnol; 2019 Apr; 29(4):617-624. PubMed ID: 30856704 [TBL] [Abstract][Full Text] [Related]
4. Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose. Bang WY; Adedeji OE; Kang HJ; Kang MD; Yang J; Lim YW; Jung YH Int J Biol Macromol; 2021 Dec; 193(Pt A):269-275. PubMed ID: 34695495 [TBL] [Abstract][Full Text] [Related]
5. Fruit peels support higher yield and superior quality bacterial cellulose production. Kumbhar JV; Rajwade JM; Paknikar KM Appl Microbiol Biotechnol; 2015 Aug; 99(16):6677-91. PubMed ID: 25957154 [TBL] [Abstract][Full Text] [Related]
6. A turning point in the bacterial nanocellulose production employing low doses of gamma radiation. Al-Hagar OEA; Abol-Fotouh D Sci Rep; 2022 Apr; 12(1):7012. PubMed ID: 35488046 [TBL] [Abstract][Full Text] [Related]
7. Bacterial nanocellulose: A versatile biopolymer production using a cost-effective wooden disc based rotary reactor. Jagtap A; Dastager SG Biopolymers; 2024 Jul; 115(4):e23577. PubMed ID: 38526043 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of carbon sources from sugar industry to bacterial nanocellulose produced by Komagataeibacter xylinus. Jaroennonthasit W; Lam NT; Sukyai P Int J Biol Macromol; 2021 Nov; 191():299-304. PubMed ID: 34530037 [TBL] [Abstract][Full Text] [Related]
9. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Fan X; Gao Y; He W; Hu H; Tian M; Wang K; Pan S Carbohydr Polym; 2016 Oct; 151():1068-1072. PubMed ID: 27474656 [TBL] [Abstract][Full Text] [Related]
10. Bacterial valorization of agricultural-waste into a nano-sized cellulosic matrix for mitigating emerging pharmaceutical pollutants: An eco-benign approach. Walling B; Bharali P; Ramachandran D; Kanagasabai V; Dutta N; Hazarika S; Maadurshni GB; Manivannan J; Kumari S; Acharjee SA; Gogoi B; Alemtoshi ; Sorhie V; Vishwakarma V Int J Biol Macromol; 2024 Oct; 277(Pt 1):133684. PubMed ID: 39084979 [TBL] [Abstract][Full Text] [Related]
11. From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose. Dubey S; Sharma RK; Agarwal P; Singh J; Sinha N; Singh RP Int J Biol Macromol; 2017 Mar; 96():52-60. PubMed ID: 27939511 [TBL] [Abstract][Full Text] [Related]
12. Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties. Bang WY; Kim DH; Kang MD; Yang J; Huh T; Lim YW; Jung YH J Microbiol Biotechnol; 2021 Oct; 31(10):1366-1372. PubMed ID: 34319261 [TBL] [Abstract][Full Text] [Related]
13. Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium. Molina-Ramírez C; Cañas-Gutiérrez A; Castro C; Zuluaga R; Gañán P Carbohydr Polym; 2020 Jul; 240():116341. PubMed ID: 32475595 [TBL] [Abstract][Full Text] [Related]
14. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12. Naloka K; Matsushita K; Theeragool G Int J Biol Macromol; 2020 May; 150():1113-1120. PubMed ID: 31739023 [TBL] [Abstract][Full Text] [Related]
16. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process. Mohammadkazemi F; Faria M; Cordeiro N Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():393-9. PubMed ID: 27157766 [TBL] [Abstract][Full Text] [Related]
17. Production of bacterial cellulose from Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes. Gopu G; Govindan S Prep Biochem Biotechnol; 2018; 48(9):842-852. PubMed ID: 30303756 [TBL] [Abstract][Full Text] [Related]
18. Statistical optimization of bioprocess parameters for enhanced production of bacterial cellulose from K. saccharivorans BC-G1. Srivastava S; Mathur G Braz J Microbiol; 2024 Sep; 55(3):2199-2210. PubMed ID: 38819773 [TBL] [Abstract][Full Text] [Related]
19. Production and characterization of Komagataeibacter xylinus SGP8 nanocellulose and its calcite based composite for removal of Cd ions. Bhattacharya A; Sadaf A; Dubey S; Singh RP; Khare SK Environ Sci Pollut Res Int; 2021 Sep; 28(34):46423-46430. PubMed ID: 32335838 [TBL] [Abstract][Full Text] [Related]
20. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria. Rozenberga L; Skute M; Belkova L; Sable I; Vikele L; Semjonovs P; Saka M; Ruklisha M; Paegle L Carbohydr Polym; 2016 Jun; 144():33-40. PubMed ID: 27083790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]