These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32103253)

  • 1. Cooperative driver pathway discovery via fusion of multi-relational data of genes, miRNAs and pathways.
    Wang J; Yang Z; Domeniconi C; Zhang X; Yu G
    Brief Bioinform; 2021 Mar; 22(2):1984-1999. PubMed ID: 32103253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CDPath: Cooperative Driver Pathways Discovery Using Integer Linear Programming and Markov Clustering.
    Yang Z; Yu G; Guo M; Yu J; Zhang X; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1384-1395. PubMed ID: 31581094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative driver pathways discovery by multiplex network embedding.
    Wang J; Chen X; Wu Z; Guo M; Yu G
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37000166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MiRNA-gene network embedding for predicting cancer driver genes.
    Peng W; Wu R; Dai W; Ning Y; Fu X; Liu L; Liu L
    Brief Funct Genomics; 2023 Jul; 22(4):341-350. PubMed ID: 36752023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prioritization of cancer driver gene with prize-collecting steiner tree by introducing an edge weighted strategy in the personalized gene interaction network.
    Zhang SW; Wang ZN; Li Y; Guo WF
    BMC Bioinformatics; 2022 Aug; 23(1):341. PubMed ID: 35974311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory network reconstruction of five essential microRNAs for survival analysis in breast cancer by integrating miRNA and mRNA expression datasets.
    He K; Li WX; Guan D; Gong M; Ye S; Fang Z; Huang JF; Lu A
    Funct Integr Genomics; 2019 Jul; 19(4):645-658. PubMed ID: 30859354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data.
    Xu T; Le TD; Liu L; Wang R; Sun B; Li J
    PLoS One; 2016; 11(4):e0152792. PubMed ID: 27035433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix factorization-based data fusion for the prediction of lncRNA-disease associations.
    Fu G; Wang J; Domeniconi C; Yu G
    Bioinformatics; 2018 May; 34(9):1529-1537. PubMed ID: 29228285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferred miRNA activity identifies miRNA-mediated regulatory networks underlying multiple cancers.
    Lee E; Ito K; Zhao Y; Schadt EE; Irie HY; Zhu J
    Bioinformatics; 2016 Jan; 32(1):96-105. PubMed ID: 26358730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs.
    Le DH; Verbeke L; Son LH; Chu DT; Pham VH
    BMC Bioinformatics; 2017 Nov; 18(1):479. PubMed ID: 29137601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of potential miRNA-mRNA regulatory network contributing to pathogenesis of HBV-related HCC.
    Lou W; Liu J; Ding B; Chen D; Xu L; Ding J; Jiang D; Zhou L; Zheng S; Fan W
    J Transl Med; 2019 Jan; 17(1):7. PubMed ID: 30602391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Analysis of miRNA-mRNA Interaction Network in Breast Cancer with Brain Metastasis.
    Li Z; Peng Z; Gu S; Zheng J; Feng D; Qin Q; He J
    Anticancer Res; 2017 Aug; 37(8):4455-4468. PubMed ID: 28739740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated network of microRNA and gene expression in ovarian cancer.
    Quitadamo A; Tian L; Hall B; Shi X
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S5. PubMed ID: 25860109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions.
    Zhang J; Le TD; Liu L; He J; Li J
    Gene; 2016 Feb; 577(1):55-64. PubMed ID: 26611531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microRNA-Messenger RNA Regulatory Network and Its Prognostic Value in Cervical Cancer.
    Liu J; Yang J; Gao F; Li S; Nie S; Meng H; Sun R; Wan Y; Jiang Y; Ma X; Cheng W
    DNA Cell Biol; 2020 Jul; 39(7):1328-1346. PubMed ID: 32456463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism.
    Peng W; Wu R; Dai W; Yu N
    BMC Bioinformatics; 2023 Jan; 24(1):16. PubMed ID: 36639646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Method to Detect Functional microRNA Regulatory Modules by Bicliques Merging.
    Liang C; Li Y; Luo J
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(3):549-56. PubMed ID: 27295638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting miRNA-Disease Associations From miRNA-Gene-Disease Heterogeneous Network With Multi-Relational Graph Convolutional Network Model.
    Peng W; Che Z; Dai W; Wei S; Lan W
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3363-3375. PubMed ID: 35776822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topological patterns in microRNA-gene regulatory network: studies in colorectal and breast cancer.
    Sengupta D; Bandyopadhyay S
    Mol Biosyst; 2013 Jun; 9(6):1360-71. PubMed ID: 23475160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of temporal activity of microRNAs from gene expression data in breast cancer cell line.
    Jayavelu ND; Bar N
    BMC Genomics; 2015 Dec; 16():1077. PubMed ID: 26763900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.