These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32103346)

  • 1. Lanthanum cobaltite supported on graphene nanosheets for non-enzymatic electrochemical determination of catechol.
    Suvina V; Kokulnathan T; Wang TJ; Balakrishna RG
    Mikrochim Acta; 2020 Feb; 187(3):189. PubMed ID: 32103346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the electrochemical properties of lanthanum cobaltite decorated halloysite nanotube nanocomposite: An advanced electrocatalyst for determination of flutamide in environmental samples.
    Suvina V; Kokulnathan T; Wang TJ; Balakrishna RG
    Ecotoxicol Environ Saf; 2020 Mar; 190():110098. PubMed ID: 31901811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and electrocatalytic effect of Ag@Pt core-shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor.
    Mazloum-Ardakani M; Hosseinzadeh L; Taleat Z
    Biosens Bioelectron; 2015 Dec; 74():30-6. PubMed ID: 26094037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocatalytic evaluation of graphene oxide warped tetragonal t-lanthanum vanadate (GO@LaVO
    Maheshwaran S; Akilarasan M; Chen TW; Chen SM; Tamilalagan E; Jiang TY; Alabdullkarem EA; Soylak M
    Mikrochim Acta; 2021 Feb; 188(3):102. PubMed ID: 33638711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical immunosensor for the breast cancer marker CA 15-3 based on the catalytic activity of a CuS/reduced graphene oxide nanocomposite towards the electrooxidation of catechol.
    Amani J; Khoshroo A; Rahimi-Nasrabadi M
    Mikrochim Acta; 2017 Dec; 185(1):79. PubMed ID: 29594363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nanocomposite consisting of cuprous oxide supported on graphitic carbon nitride nanosheets for non-enzymatic electrochemical sensing of 8-hydroxy-2'-deoxyguanosine.
    Rajaji U; Selvi SV; Chen SM; Chinnapaiyan S; Chen TW; Govindasamy M
    Mikrochim Acta; 2020 Jul; 187(8):459. PubMed ID: 32686000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrochemical daunorubicin sensor based on the use of platinum nanoparticles loaded onto a nanocomposite prepared from nitrogen decorated reduced graphene oxide and single-walled carbon nanotubes.
    Kong FY; Li RF; Yao L; Wang ZX; Lv WX; Wang W
    Mikrochim Acta; 2019 May; 186(5):321. PubMed ID: 31049702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nanocomposite prepared from hemin and reduced graphene oxide foam for voltammetric sensing of hydrogen peroxide.
    Li Q; Zhang Y; Li P; Xue H; Jia N
    Mikrochim Acta; 2019 Dec; 187(1):45. PubMed ID: 31836912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphite/Ag/AgCl nanocomposite as a new and highly efficient electrocatalyst for selective electroxidation of oxalic acid and its assay in real samples.
    Alizadeh T; Nayeri S
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():826-836. PubMed ID: 30948120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of a novel 3D rose like lanthanum doped zirconia decorated reduced graphene oxide nanosheets: An efficient electro-catalyst for electrochemical reduction of futuristic anti-cancer drug salinomycin during pharmacokinetic study.
    Alkahtani SA; Mahmoud AM; Mahnashi MH; Ali R; El-Wekil MM
    Biosens Bioelectron; 2020 Feb; 150():111849. PubMed ID: 31733999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gold electrode modified with a gold-graphene oxide nanocomposite for non-enzymatic sensing of glucose at near-neutral pH values.
    He C; Wang J; Gao N; He H; Zou K; Ma M; Zhou Y; Cai Z; Chang G; He Y
    Mikrochim Acta; 2019 Oct; 186(11):722. PubMed ID: 31655901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a Copper Bismuthate/Graphene Nanocomposite for Electrochemical Detection of Catechol.
    Kaleeswarran P; Sakthi Priya T; Chen TW; Chen SM; Kokulnathan T; Arumugam A
    Langmuir; 2022 Aug; 38(33):10162-10172. PubMed ID: 35939572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid.
    Ezhil Vilian AT; Rajkumar M; Chen SM
    Colloids Surf B Biointerfaces; 2014 Mar; 115():295-301. PubMed ID: 24384145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical co-deposition synthesis of Au-ZrO
    Gao N; He C; Ma M; Cai Z; Zhou Y; Chang G; Wang X; He Y
    Anal Chim Acta; 2019 Sep; 1072():25-34. PubMed ID: 31146862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone-graphene nanosheets-nickel nanoparticles-chitosan nanocomposite.
    Liu Z; Guo Y; Dong C
    Talanta; 2015 May; 137():87-93. PubMed ID: 25770610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced graphene oxide decorated on Cu/CuO-Ag nanocomposite as a high-performance material for the construction of a non-enzymatic sensor: Application to the determination of carbaryl and fenamiphos pesticides.
    Hashemi P; Karimian N; Khoshsafar H; Arduini F; Mesri M; Afkhami A; Bagheri H
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():764-772. PubMed ID: 31147049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive and selective determination of p-nitrophenol at an interpenetrating networks structure of self-assembled rod-like lanthanum hydroxide-oxidized multi-walled carbon nanotubes nanocomposite.
    Yuan MM; Zou J; Guan JF; Huang ZN; Yu JG
    Ecotoxicol Environ Saf; 2020 Sep; 201():110862. PubMed ID: 32559691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The comparison of different gold nanoparticles/graphene nanosheets hybrid nanocomposites in electrochemical performance and the construction of a sensitive uric acid electrochemical sensor with novel hybrid nanocomposites.
    Xue Y; Zhao H; Wu Z; Li X; He Y; Yuan Z
    Biosens Bioelectron; 2011 Nov; 29(1):102-8. PubMed ID: 21871789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A non-enzymatic glucose sensor based on a CoNi
    Amin BG; Masud J; Nath M
    J Mater Chem B; 2019 Apr; 7(14):2338-2348. PubMed ID: 32254682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust and selective electrochemical detection of antibiotic residues: The case of integrated lutetium vanadate/graphene sheets architectures.
    Kokulnathan T; Chen SM
    J Hazard Mater; 2020 Feb; 384():121304. PubMed ID: 31581009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.