These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32103519)

  • 1. Protein Phosphorylation Dynamics: Unexplored Because of Current Methodological Limitations: Dynamics of Processive Phosphorylation.
    Robichon A
    Bioessays; 2020 Apr; 42(4):e1900149. PubMed ID: 32103519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data.
    Yang P; Humphrey SJ; James DE; Yang YH; Jothi R
    Bioinformatics; 2016 Jan; 32(2):252-9. PubMed ID: 26395771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NetworKIN: a resource for exploring cellular phosphorylation networks.
    Linding R; Jensen LJ; Pasculescu A; Olhovsky M; Colwill K; Bork P; Yaffe MB; Pawson T
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D695-9. PubMed ID: 17981841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y
    J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic analysis of protein phosphorylation networks from phosphoproteomic data.
    Song C; Ye M; Liu Z; Cheng H; Jiang X; Han G; Songyang Z; Tan Y; Wang H; Ren J; Xue Y; Zou H
    Mol Cell Proteomics; 2012 Oct; 11(10):1070-83. PubMed ID: 22798277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed times to tissue fixation result in unpredictable global phosphoproteome changes.
    Gündisch S; Grundner-Culemann K; Wolff C; Schott C; Reischauer B; Machatti M; Groelz D; Schaab C; Tebbe A; Becker KF
    J Proteome Res; 2013 Oct; 12(10):4424-34. PubMed ID: 23984901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Illuminating the dark phosphoproteome.
    Needham EJ; Parker BL; Burykin T; James DE; Humphrey SJ
    Sci Signal; 2019 Jan; 12(565):. PubMed ID: 30670635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis.
    Olsen JV; Vermeulen M; Santamaria A; Kumar C; Miller ML; Jensen LJ; Gnad F; Cox J; Jensen TS; Nigg EA; Brunak S; Mann M
    Sci Signal; 2010 Jan; 3(104):ra3. PubMed ID: 20068231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Phosphosites to Kinases.
    Munk S; Refsgaard JC; Olsen JV; Jensen LJ
    Methods Mol Biol; 2016; 1355():307-21. PubMed ID: 26584935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of phosphoproteomic, chemical, and biological strategies for the functional analysis of targeted protein phosphorylation.
    Guo M; Huang BX
    Proteomics; 2013 Feb; 13(3-4):424-37. PubMed ID: 23125184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. qPhos: a database of protein phosphorylation dynamics in humans.
    Yu K; Zhang Q; Liu Z; Zhao Q; Zhang X; Wang Y; Wang ZX; Jin Y; Li X; Liu ZX; Xu RH
    Nucleic Acids Res; 2019 Jan; 47(D1):D451-D458. PubMed ID: 30380102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative network analysis of the signaling cascades in seedling leaves of bread wheat by large-scale phosphoproteomic profiling.
    Lv DW; Ge P; Zhang M; Cheng ZW; Li XH; Yan YM
    J Proteome Res; 2014 May; 13(5):2381-95. PubMed ID: 24679076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteomic Analysis of Rat Neutrophils Shows the Effect of Intestinal Ischemia/Reperfusion and Preconditioning on Kinases and Phosphatases.
    Tahir M; Arshid S; Fontes B; S Castro M; Sidoli S; Schwämmle V; Luz IS; Roepstorff P; Fontes W
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32823483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoproteomics Meets Chemical Genetics: Approaches for Global Mapping and Deciphering the Phosphoproteome.
    Jurcik J; Sivakova B; Cipakova I; Selicky T; Stupenova E; Jurcik M; Osadska M; Barath P; Cipak L
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33076458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective.
    Padrão AI; Vitorino R; Duarte JA; Ferreira R; Amado F
    J Proteome Res; 2013 Oct; 12(10):4257-67. PubMed ID: 23964737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical strategies in mass spectrometry-based phosphoproteomics.
    Rosenqvist H; Ye J; Jensen ON
    Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technologies and challenges in large-scale phosphoproteomics.
    Engholm-Keller K; Larsen MR
    Proteomics; 2013 Mar; 13(6):910-31. PubMed ID: 23404676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometric tools for systematic analysis of protein phosphorylation.
    St-Denis N; Gingras AC
    Prog Mol Biol Transl Sci; 2012; 106():3-32. PubMed ID: 22340712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KinPred: A unified and sustainable approach for harnessing proteome-level human kinase-substrate predictions.
    Xue B; Jordan B; Rizvi S; Naegle KM
    PLoS Comput Biol; 2021 Feb; 17(2):e1008681. PubMed ID: 33556051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Protein Phosphorylation Sites by Advanced LC-ESI-MS/MS Methods.
    Lenz C
    Methods Mol Biol; 2019; 1934():163-178. PubMed ID: 31256379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.