These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 32103600)
1. Wip1 regulates Smad4 phosphorylation and inhibits TGF-β signaling. Park DS; Yoon GH; Kim EY; Lee T; Kim K; Lee PC; Chang EJ; Choi SC EMBO Rep; 2020 May; 21(5):e48693. PubMed ID: 32103600 [TBL] [Abstract][Full Text] [Related]
2. Controlling Smad4 signaling with a Wip. Ten Dijke P; Baker D EMBO Rep; 2020 May; 21(5):e50246. PubMed ID: 32189449 [TBL] [Abstract][Full Text] [Related]
3. A component of the ARC/Mediator complex required for TGF beta/Nodal signalling. Kato Y; Habas R; Katsuyama Y; Näär AM; He X Nature; 2002 Aug; 418(6898):641-6. PubMed ID: 12167862 [TBL] [Abstract][Full Text] [Related]
4. PDZK1-interacting protein 1 (PDZK1IP1) traps Smad4 protein and suppresses transforming growth factor-β (TGF-β) signaling. Ikeno S; Nakano N; Sano K; Minowa T; Sato W; Akatsu R; Sakata N; Hanagata N; Fujii M; Itoh F; Itoh S J Biol Chem; 2019 Mar; 294(13):4966-4980. PubMed ID: 30718277 [TBL] [Abstract][Full Text] [Related]
5. The tumor suppressor Smad4/DPC4 is regulated by phosphorylations that integrate FGF, Wnt, and TGF-β signaling. Demagny H; Araki T; De Robertis EM Cell Rep; 2014 Oct; 9(2):688-700. PubMed ID: 25373906 [TBL] [Abstract][Full Text] [Related]
6. Expression of functional Schistosoma mansoni Smad4: role in Erk-mediated transforming growth factor beta (TGF-beta) down-regulation. Osman A; Niles EG; LoVerde PT J Biol Chem; 2004 Feb; 279(8):6474-86. PubMed ID: 14630909 [TBL] [Abstract][Full Text] [Related]
7. Xbra modulates the activity of linker region phosphorylated Smad1 during Xenopus development. Kumar S; Umair Z; Kumar V; Goutam RS; Park S; Lee U; Kim J Sci Rep; 2024 Apr; 14(1):8922. PubMed ID: 38637565 [TBL] [Abstract][Full Text] [Related]
8. The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function. Zhang Y; Musci T; Derynck R Curr Biol; 1997 Apr; 7(4):270-6. PubMed ID: 9094310 [TBL] [Abstract][Full Text] [Related]
9. Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Dupont S; Zacchigna L; Cordenonsi M; Soligo S; Adorno M; Rugge M; Piccolo S Cell; 2005 Apr; 121(1):87-99. PubMed ID: 15820681 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of TGF-β signaling reveal adaptive and pulsatile behaviors reflected in the nuclear localization of transcription factor Smad4. Warmflash A; Zhang Q; Sorre B; Vonica A; Siggia ED; Brivanlou AH Proc Natl Acad Sci U S A; 2012 Jul; 109(28):E1947-56. PubMed ID: 22689943 [TBL] [Abstract][Full Text] [Related]
11. Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Candia AF; Watabe T; Hawley SH; Onichtchouk D; Zhang Y; Derynck R; Niehrs C; Cho KW Development; 1997 Nov; 124(22):4467-80. PubMed ID: 9409665 [TBL] [Abstract][Full Text] [Related]
12. Nuclear Respiratory Factor-1, a Novel SMAD4 Binding Protein, Represses TGF-β/SMAD4 Signaling by Functioning as a Transcriptional Cofactor. Rajasekaran N; Song K; Lee JH; Wei Y; Erkin ÖC; Lee H; Shin YK Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070531 [TBL] [Abstract][Full Text] [Related]
13. Small C-terminal Domain Phosphatase 3 Dephosphorylates the Linker Sites of Receptor-regulated Smads (R-Smads) to Ensure Transforming Growth Factor β (TGFβ)-mediated Germ Layer Induction in Xenopus Embryos. Sun G; Hu Z; Min Z; Yan X; Guan Z; Su H; Fu Y; Ma X; Chen YG; Zhang MQ; Tao Q; Wu W J Biol Chem; 2015 Jul; 290(28):17239-49. PubMed ID: 26013826 [TBL] [Abstract][Full Text] [Related]
14. Sumoylation of Smad4, the common Smad mediator of transforming growth factor-beta family signaling. Lee PS; Chang C; Liu D; Derynck R J Biol Chem; 2003 Jul; 278(30):27853-63. PubMed ID: 12740389 [TBL] [Abstract][Full Text] [Related]
15. CTGF mediates Smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development. Parada C; Li J; Iwata J; Suzuki A; Chai Y Mol Cell Biol; 2013 Sep; 33(17):3482-93. PubMed ID: 23816882 [TBL] [Abstract][Full Text] [Related]
16. Wip1 directly dephosphorylates NLK and increases Wnt activity during germ cell development. Cho SJ; Cha BS; Kwon OS; Lim J; Shin DM; Han DW; Ishitani T; Jho EH; Fornace AJ; Cha HJ Biochim Biophys Acta Mol Basis Dis; 2017 Apr; 1863(4):1013-1022. PubMed ID: 28185954 [TBL] [Abstract][Full Text] [Related]
17. Function of the two Xenopus smad4s in early frog development. Chang C; Brivanlou AH; Harland RM J Biol Chem; 2006 Oct; 281(41):30794-803. PubMed ID: 16908518 [TBL] [Abstract][Full Text] [Related]
18. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus. Pierreux CE; Nicolás FJ; Hill CS Mol Cell Biol; 2000 Dec; 20(23):9041-54. PubMed ID: 11074002 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of TGF-β signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A. Bourgeois B; Gilquin B; Tellier-Lebègue C; Östlund C; Wu W; Pérez J; El Hage P; Lallemand F; Worman HJ; Zinn-Justin S Sci Signal; 2013 Jun; 6(280):ra49. PubMed ID: 23779087 [TBL] [Abstract][Full Text] [Related]
20. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Lagna G; Hata A; Hemmati-Brivanlou A; Massagué J Nature; 1996 Oct; 383(6603):832-6. PubMed ID: 8893010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]