BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32103982)

  • 1. IFI30 Is a Novel Immune-Related Target with Predicting Value of Prognosis and Treatment Response in Glioblastoma.
    Zhu C; Chen X; Guan G; Zou C; Guo Q; Cheng P; Cheng W; Wu A
    Onco Targets Ther; 2020; 13():1129-1143. PubMed ID: 32103982
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Jiang W; Zheng F; Yao T; Gong F; Zheng W; Yao N
    Ann Transl Med; 2021 Nov; 9(22):1686. PubMed ID: 34988195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IFI30 expression is an independent unfavourable prognostic factor in glioma.
    Liu X; Song C; Yang S; Ji Q; Chen F; Li W
    J Cell Mol Med; 2020 Nov; 24(21):12433-12443. PubMed ID: 32969157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Ferroptosis-Related Gene Prognostic Index to Predict Temozolomide Sensitivity and Immune Checkpoint Inhibitor Response for Glioma.
    Cai Y; Liang X; Zhan Z; Zeng Y; Lin J; Xu A; Xue S; Xu W; Chai P; Mao Y; Song Z; Han L; Xiao J; Song Y; Zhang X
    Front Cell Dev Biol; 2021; 9():812422. PubMed ID: 35174170
    [No Abstract]   [Full Text] [Related]  

  • 5. IFI30 expression predicts patient prognosis in breast cancer and dictates breast cancer cells proliferation via regulating autophagy.
    Fan Y; Wang X; Li Y
    Int J Med Sci; 2021; 18(14):3342-3352. PubMed ID: 34400904
    [No Abstract]   [Full Text] [Related]  

  • 6. Systematic identification, development, and validation of prognostic biomarkers involving the tumor-immune microenvironment for glioblastoma.
    Zhao B; Wang Y; Wang Y; Chen W; Liu PH; Kong Z; Dai C; Wang Y; Ma W
    J Cell Physiol; 2021 Jan; 236(1):507-522. PubMed ID: 32572951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Costimulatory checkpoint SLAMF8 is an independent prognosis factor in glioma.
    Zou CY; Guan GF; Zhu C; Liu TQ; Guo Q; Cheng W; Wu AH
    CNS Neurosci Ther; 2019 Mar; 25(3):333-342. PubMed ID: 30105842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor Immune Microenvironment Landscape in Glioma Identifies a Prognostic and Immunotherapeutic Signature.
    Zhang C; Guo L; Su Z; Luo N; Tan Y; Xu P; Ye L; Tong S; Liu H; Li X; Chen Q; Tian D
    Front Cell Dev Biol; 2021; 9():717601. PubMed ID: 34650972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel lncRNA Panel Related to Ferroptosis, Tumor Progression, and Microenvironment is a Robust Prognostic Indicator for Glioma Patients.
    He Y; Ye Y; Tian W; Qiu H
    Front Cell Dev Biol; 2021; 9():788451. PubMed ID: 34950662
    [No Abstract]   [Full Text] [Related]  

  • 10. Elevated TYROBP expression predicts poor prognosis and high tumor immune infiltration in patients with low-grade glioma.
    Lu J; Peng Y; Huang R; Feng Z; Fan Y; Wang H; Zeng Z; Ji Y; Wang Y; Wang Z
    BMC Cancer; 2021 Jun; 21(1):723. PubMed ID: 34162355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prognostic value and immune relevancy of a combined autophagy-, apoptosis- and necrosis-related gene signature in glioblastoma.
    Bi Y; Wu ZH; Cao F
    BMC Cancer; 2022 Mar; 22(1):233. PubMed ID: 35241019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune and Clinical Features of
    Zhang Q; Zhong H; Fan Y; Liu Q; Song J; Yao S; Cao F
    Front Bioeng Biotechnol; 2020; 8():592. PubMed ID: 32695752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CDH2 expression is of prognostic significance in glioma and predicts the efficacy of temozolomide therapy in patients with glioblastoma.
    Chen Q; Cai J; Jiang C
    Oncol Lett; 2018 May; 15(5):7415-7422. PubMed ID: 29731893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of an interferon signature predicting prognosis and treatment response for glioblastoma.
    Zhu C; Zou C; Guan G; Guo Q; Yan Z; Liu T; Shen S; Xu X; Chen C; Lin Z; Cheng W; Wu A
    Oncoimmunology; 2019; 8(9):e1621677. PubMed ID: 31428519
    [No Abstract]   [Full Text] [Related]  

  • 15. Identification of Immune-Related Genes Contributing to the Development of Glioblastoma Using Weighted Gene Co-expression Network Analysis.
    Kong Y; Feng ZC; Zhang YL; Liu XF; Ma Y; Zhao ZM; Huang B; Chen AJ; Zhang D; Thorsen F; Wang J; Yang N; Li XG
    Front Immunol; 2020; 11():1281. PubMed ID: 32765489
    [No Abstract]   [Full Text] [Related]  

  • 16. Immune Infiltration-Related Signature Predicts Risk Stratification and Immunotherapy Efficacy in Grade II and III Gliomas.
    Luo C; Liu Z; Ye W; Liu F
    Front Cell Dev Biol; 2021; 9():756005. PubMed ID: 34805164
    [No Abstract]   [Full Text] [Related]  

  • 17. Development and Validation of an Mesenchymal-Related Long Non-Coding RNA Prognostic Model in Glioma.
    Huang K; Yue X; Zheng Y; Zhang Z; Cheng M; Li L; Chen Z; Yang Z; Bian E; Zhao B
    Front Oncol; 2021; 11():726745. PubMed ID: 34540695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive profiling identifies a novel signature with robust predictive value and reveals the potential drug resistance mechanism in glioma.
    Zeng F; Wang K; Liu X; Zhao Z
    Cell Commun Signal; 2020 Jan; 18(1):2. PubMed ID: 31907037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prognostic Correlation of Autophagy-Related Gene Expression-Based Risk Signature in Patients with Glioblastoma.
    Wang QW; Liu HJ; Zhao Z; Zhang Y; Wang Z; Jiang T; Bao ZS
    Onco Targets Ther; 2020; 13():95-107. PubMed ID: 32021258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy.
    Qian J; Wang C; Wang B; Yang J; Wang Y; Luo F; Xu J; Zhao C; Liu R; Chu Y
    J Neuroinflammation; 2018 Oct; 15(1):290. PubMed ID: 30333036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.