These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 32104497)
1. PEGylated Bilirubin-coated Iron Oxide Nanoparticles as a Biosensor for Magnetic Relaxation Switching-based ROS Detection in Whole Blood. Lee DY; Kang S; Lee Y; Kim JY; Yoo D; Jung W; Lee S; Jeong YY; Lee K; Jon S Theranostics; 2020; 10(5):1997-2007. PubMed ID: 32104497 [No Abstract] [Full Text] [Related]
2. Polyethylene Glycol-Chitosan Oligosaccharide-Coated Superparamagnetic Iron Oxide Nanoparticles: A Novel Drug Delivery System for Curcumin Diglutaric Acid. Sorasitthiyanukarn FN; Muangnoi C; Thaweesest W; Bhuket PRN; Jantaratana P; Rojsitthisak P; Rojsitthisak P Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31906490 [TBL] [Abstract][Full Text] [Related]
3. One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI contrast enhancement. Dai L; Liu Y; Wang Z; Guo F; Shi D; Zhang B Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():161-7. PubMed ID: 24907749 [TBL] [Abstract][Full Text] [Related]
5. Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging. Xue S; Wang Y; Wang M; Zhang L; Du X; Gu H; Zhang C Int J Nanomedicine; 2014; 9():2527-38. PubMed ID: 24904212 [TBL] [Abstract][Full Text] [Related]
6. Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T1- and T2-weighted magnetic resonance imaging. Hu F; Jia Q; Li Y; Gao M Nanotechnology; 2011 Jun; 22(24):245604. PubMed ID: 21508500 [TBL] [Abstract][Full Text] [Related]
7. In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting. Mojica Pisciotti ML; Lima E; Vasquez Mansilla M; Tognoli VE; Troiani HE; Pasa AA; Creczynski-Pasa TB; Silva AH; Gurman P; Colombo L; Goya GF; Lamagna A; Zysler RD J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):860-8. PubMed ID: 24458920 [TBL] [Abstract][Full Text] [Related]
8. Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging. You DG; Saravanakumar G; Son S; Han HS; Heo R; Kim K; Kwon IC; Lee JY; Park JH Carbohydr Polym; 2014 Jan; 101():1225-33. PubMed ID: 24299895 [TBL] [Abstract][Full Text] [Related]
9. Effects of Iron-Oxide Nanoparticle Surface Chemistry on Uptake Kinetics and Cytotoxicity in CHO-K1 Cells. Hanot CC; Choi YS; Anani TB; Soundarrajan D; David AE Int J Mol Sci; 2015 Dec; 17(1):. PubMed ID: 26729108 [TBL] [Abstract][Full Text] [Related]
10. Effect of PEG molecular weight on stability, T₂ contrast, cytotoxicity, and cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs). Park YC; Smith JB; Pham T; Whitaker RD; Sucato CA; Hamilton JA; Bartolak-Suki E; Wong JY Colloids Surf B Biointerfaces; 2014 Jul; 119():106-14. PubMed ID: 24877593 [TBL] [Abstract][Full Text] [Related]
11. Folate-PEG-superparamagnetic iron oxide nanoparticles for lung cancer imaging. Yoo MK; Park IK; Lim HT; Lee SJ; Jiang HL; Kim YK; Choi YJ; Cho MH; Cho CS Acta Biomater; 2012 Aug; 8(8):3005-13. PubMed ID: 22543005 [TBL] [Abstract][Full Text] [Related]
12. Polymeric Reactor for the Synthesis of Superparamagnetic-Thermal Treatment of Breast Cancer. Alhasan AH; Fardous RS; Alsudir SA; Majrashi MA; Alghamdi WM; Alsharaeh EH; Almalik AM Mol Pharm; 2019 Aug; 16(8):3577-3587. PubMed ID: 31291120 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, characterization and theranostic evaluation of Indium-111 labeled multifunctional superparamagnetic iron oxide nanoparticles. Zolata H; Abbasi Davani F; Afarideh H Nucl Med Biol; 2015 Feb; 42(2):164-70. PubMed ID: 25311750 [TBL] [Abstract][Full Text] [Related]
14. A Core-Shell-Satellite Structured Fe Feng L; Yang D; He F; Gai S; Li C; Dai Y; Yang P Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28643467 [TBL] [Abstract][Full Text] [Related]
15. Superparamagnetic iron oxide nanoparticles attenuate lipopolysaccharide-induced inflammatory responses through modulation of toll-like receptor 4 expression. Chen Y; Zeng Z; Ying H; Wu C; Chen S J Appl Toxicol; 2020 Aug; 40(8):1067-1075. PubMed ID: 32207180 [TBL] [Abstract][Full Text] [Related]
16. Magnetic Control of Protein Expression via Magneto-mechanical Actuation of ND-PEGylated Iron Oxide Nanocubes for Cell Therapy. Beltran-Huarac J; Yamaleyeva DN; Dotti G; Hingtgen S; Sokolsky-Papkov M; Kabanov AV ACS Appl Mater Interfaces; 2023 Apr; 15(16):19877-19891. PubMed ID: 37040569 [TBL] [Abstract][Full Text] [Related]
17. The labeling of stem cells by superparamagnetic iron oxide nanoparticles modified with PEG/PVP or PEG/PEI. Yang G; Ma W; Zhang B; Xie Q Mater Sci Eng C Mater Biol Appl; 2016 May; 62():384-90. PubMed ID: 26952437 [TBL] [Abstract][Full Text] [Related]
18. Incorporation of Targeting Biomolecule Improves Interpolymer Complex-Superparamagnetic Iron Oxide Nanoparticles Attachment to and Activation of T Nwasike C; Purr E; Nagi JS; Mahler GJ; Doiron AL Int J Nanomedicine; 2023; 18():473-487. PubMed ID: 36718192 [TBL] [Abstract][Full Text] [Related]
19. PEG/Dextran Double Layer Influences Fe Ion Release and Colloidal Stability of Iron Oxide Nanoparticles. Mohammadi MR; Malkovskiy AV; Jothimuthu P; Kim KM; Parekh M; Inayathullah M; Zhuge Y; Rajadas J Sci Rep; 2018 Mar; 8(1):4286. PubMed ID: 29523826 [TBL] [Abstract][Full Text] [Related]
20. Promoting the Delivery of Nanoparticles to Atherosclerotic Plaques by DNA Coating. Zhang L; Tian XY; Chan CKW; Bai Q; Cheng CK; Chen FM; Cheung MSH; Yin B; Yang H; Yung WY; Chen Z; Ding F; Leung KC; Zhang C; Huang Y; Lau JYW; Choi CHJ ACS Appl Mater Interfaces; 2019 Apr; 11(15):13888-13904. PubMed ID: 30516979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]