These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 321045)

  • 61. Substrate inhibition kinetics of Saccharomyces cerevisiae in fed-batch cultures operated at constant glucose and maltose concentration levels.
    Papagianni M; Boonpooh Y; Mattey M; Kristiansen B
    J Ind Microbiol Biotechnol; 2007 Apr; 34(4):301-9. PubMed ID: 17211636
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of changes in the pH and carbon dioxide evolution rate on the measured respiratory quotient of fermentations.
    Royce PN
    Biotechnol Bioeng; 1992 Dec; 40(10):1129-38. PubMed ID: 18601064
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Utilization of prickly pear waste for baker's yeast production.
    Diboune N; Nancib A; Nancib N; Aníbal J; Boudrant J
    Biotechnol Appl Biochem; 2019 Sep; 66(5):744-754. PubMed ID: 30994949
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Maximizing biomass concentration in baker's yeast process by using a decoupled geometric controller for substrate and dissolved oxygen.
    Chopda VR; Rathore AS; Gomes J
    Bioresour Technol; 2015 Nov; 196():160-8. PubMed ID: 26233328
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Semisolid state fermentation of baker's yeast in an air-fluidized bed fermentor.
    Hong K; Tanner RD; Crooke PS; Malaney GW
    Appl Biochem Biotechnol; 1988 Aug; 18():3-17. PubMed ID: 3052296
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Parallelised online biomass monitoring in shake flasks enables efficient strain and carbon source dependent growth characterisation of Saccharomyces cerevisiae.
    Bruder S; Reifenrath M; Thomik T; Boles E; Herzog K
    Microb Cell Fact; 2016 Jul; 15(1):127. PubMed ID: 27455954
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fluorescence sensing of fermentation parameters using fiber optics.
    Junker BH; Wang DI; Hatton TA
    Biotechnol Bioeng; 1988 Jun; 32(1):55-63. PubMed ID: 18584718
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Experimental simulation of oxygen profiles and their influence on baker's yeast production: I. One-fermentor system.
    Sweere AP; Mesters JR; Janse L; Luyben KC; Kossen NW
    Biotechnol Bioeng; 1988 Apr; 31(6):567-78. PubMed ID: 18584647
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fermentative capacity of baker's yeast exposed to hyperbaric stress.
    Campelo AF; Belo I
    Biotechnol Lett; 2004 Aug; 26(15):1237-40. PubMed ID: 15289680
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sensor fusion with on-line gas emission multisensor arrays and standard process measuring devices in baker's yeast manufacturing process.
    Mandenius CF; Eklöv T; Lundström I
    Biotechnol Bioeng; 1997 Jul; 55(2):427-38. PubMed ID: 18636501
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Barcode technology in yeast: application to pharmacogenomics.
    Delneri D
    FEMS Yeast Res; 2010 Dec; 10(8):1083-9. PubMed ID: 20846145
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Theanine production by coupled fermentation with energy transfer employing Pseudomonas taetrolens Y-30 glutamine synthetase and baker's yeast cells.
    Yamamoto S; Wakayama M; Tachiki T
    Biosci Biotechnol Biochem; 2005 Apr; 69(4):784-9. PubMed ID: 15849418
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Monitoring of Saccharomyces cerevisiae in commercial bakers' yeast fermentation.
    Hatch RT; Veilleux BG
    Biotechnol Bioeng; 1995 May; 46(4):371-4. PubMed ID: 18623324
    [TBL] [Abstract][Full Text] [Related]  

  • 74. New insights on the baker's yeast-mediated hydration of oleic acid: the bacterial contaminants of yeast are responsible for the stereoselective formation of (R)-10-hydroxystearic acid.
    Serra S; De Simeis D
    J Appl Microbiol; 2018 Mar; 124(3):719-729. PubMed ID: 29280549
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Development of a pH-controlled fed-batch system for budding yeast.
    Porro D; Martegani E; Tura A; Ranzi BM
    Res Microbiol; 1991 Jun; 142(5):535-9. PubMed ID: 1947425
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chromium uptake by Saccharomyces cerevisiae and isolation of glucose tolerance factor from yeast biomass.
    Zetić VG; Stehlik-Tomas V; Grba S; Lutilsky L; Kozlek D
    J Biosci; 2001 Jun; 26(2):217-23. PubMed ID: 11426057
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Experimental simulation of oxygen profiles and their influence on baker's yeast production: II. Two-fermentor system.
    Sweere AP; Janse L; Luyben KC; Kossen NW
    Biotechnol Bioeng; 1988 Apr; 31(6):579-86. PubMed ID: 18584648
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multiple increase in productivity of the yeast at reducing the fraction of D
    Pershin SM; Ismailov ES; Dibirova MM; Akhmedov ME; Tagirova FV; Shashkov DI; Abdulmagomedova ZN
    Dokl Biochem Biophys; 2017 Sep; 476(1):299-302. PubMed ID: 29101743
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Principal component ANN for modelling and control of baker's yeast production.
    Kurtanjek Z
    J Biotechnol; 1998 Oct; 65(1):23-35. PubMed ID: 9828452
    [TBL] [Abstract][Full Text] [Related]  

  • 80. On-line size measurement of yeast aggregates using image analysis.
    Mas S; Ghommidh C
    Biotechnol Bioeng; 2001 Sep; 76(2):91-8. PubMed ID: 11505378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.