These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 32104556)
1. Tip-Over Stability Analysis of a Pelvic Support Walking Robot. Han Y; Guo S; Zhang L; Xi FJ; Lu W J Healthc Eng; 2020; 2020():1506250. PubMed ID: 32104556 [TBL] [Abstract][Full Text] [Related]
2. Force Analysis and Evaluation of a Pelvic Support Walking Robot with Joint Compliance. Ji J; Guo S; Xi FJ J Healthc Eng; 2018; 2018():9235023. PubMed ID: 30622691 [TBL] [Abstract][Full Text] [Related]
3. Capture Point-Based Controller Using Real-Time Zero Moment Point Manipulation for Stable Bipedal Walking in Human Environment. Hong YD Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382573 [TBL] [Abstract][Full Text] [Related]
4. Immediate after-effects of robot-assisted gait with pelvic support or pelvic constraint on overground walking in healthy subjects. Alingh JF; Weerdesteyn V; Nienhuis B; van Asseldonk EHF; Geurts ACH; Groen BE J Neuroeng Rehabil; 2019 Mar; 16(1):40. PubMed ID: 30876445 [TBL] [Abstract][Full Text] [Related]
5. Theoretical analysis of the state of balance in bipedal walking. Firmani F; Park EJ J Biomech Eng; 2013 Apr; 135(4):041003. PubMed ID: 24231898 [TBL] [Abstract][Full Text] [Related]
6. Gait Planning and Stability Control of a Quadruped Robot. Li J; Wang J; Yang SX; Zhou K; Tang H Comput Intell Neurosci; 2016; 2016():9853070. PubMed ID: 27143959 [TBL] [Abstract][Full Text] [Related]
7. A Safe and Compliant Noncontact Interactive Approach for Wheeled Walking Aid Robot. Zhao D; Wang W; Okonkwo MC; Yang Z; Yang J; Liu H Comput Intell Neurosci; 2022; 2022():3033920. PubMed ID: 35341193 [TBL] [Abstract][Full Text] [Related]
8. Walking with robot assistance: the influence of body weight support on the trunk and pelvis kinematics. Swinnen E; Baeyens JP; Knaepen K; Michielsen M; Hens G; Clijsen R; Goossens M; Buyl R; Meeusen R; Kerckhofs E Disabil Rehabil Assist Technol; 2015 May; 10(3):252-7. PubMed ID: 24512196 [TBL] [Abstract][Full Text] [Related]
9. Tandem Stance Avoidance Using Adaptive and Asymmetric Admittance Control for Fall Prevention. Nakagawa S; Hasegawa Y; Fukuda T; Kondo I; Tanimoto M; Di P; Huang J; Huang Q IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):542-50. PubMed ID: 25955991 [TBL] [Abstract][Full Text] [Related]
10. Robot-assisted walking with the Lokomat: the influence of different levels of guidance force on thorax and pelvis kinematics. Swinnen E; Baeyens JP; Knaepen K; Michielsen M; Clijsen R; Beckwée D; Kerckhofs E Clin Biomech (Bristol); 2015 Mar; 30(3):254-9. PubMed ID: 25662678 [TBL] [Abstract][Full Text] [Related]
11. Developing a novel force forecasting technique for early prediction of critical events in robotics. Narayan M; Fey AM PLoS One; 2020; 15(5):e0230009. PubMed ID: 32379827 [TBL] [Abstract][Full Text] [Related]
12. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic. Li TH; Su YT; Lai SW; Hu JJ IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871 [TBL] [Abstract][Full Text] [Related]
13. Improving transparency of powered exoskeletons using force/torque sensors on the supporting cuffs. Zanotto D; Lenzi T; Stegall P; Agrawal SK IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650404. PubMed ID: 24187223 [TBL] [Abstract][Full Text] [Related]
14. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot. Or J Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370 [TBL] [Abstract][Full Text] [Related]
15. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. Emken JL; Benitez R; Reinkensmeyer DJ J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527 [TBL] [Abstract][Full Text] [Related]
16. Motion synthesis and force distribution analysis for a biped robot. Trojnacki MT; Zielińska T Acta Bioeng Biomech; 2011; 13(2):45-56. PubMed ID: 21761810 [TBL] [Abstract][Full Text] [Related]
17. Simulation of Disturbance Recovery Based on MPC and Whole-Body Dynamics Control of Biped Walking. Shi X; Gao J; Lu Y; Tian D; Liu Y Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456320 [TBL] [Abstract][Full Text] [Related]
18. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking. van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212 [TBL] [Abstract][Full Text] [Related]
19. Body weight support during robot-assisted walking: influence on the trunk and pelvis kinematics. Swinnen E; Baeyens JP; Hens G; Knaepen K; Beckwée D; Michielsen M; Clijsen R; Kerckhofs E NeuroRehabilitation; 2015; 36(1):81-91. PubMed ID: 25547772 [TBL] [Abstract][Full Text] [Related]
20. A lower-limb power-assist robot with perception-assist. Hayashi Y; Kiguchi K IEEE Int Conf Rehabil Robot; 2011; 2011():5975445. PubMed ID: 22275645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]