These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32104883)

  • 1. Studying signal compartmentation in adult cardiomyocytes.
    Judina A; Gorelik J; Wright PT
    Biochem Soc Trans; 2020 Feb; 48(1):61-70. PubMed ID: 32104883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation.
    Nikolaev VO; Moshkov A; Lyon AR; Miragoli M; Novak P; Paur H; Lohse MJ; Korchev YE; Harding SE; Gorelik J
    Science; 2010 Mar; 327(5973):1653-7. PubMed ID: 20185685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Development of Compartmentation of cAMP Signaling in Cardiomyocytes: The Role of T-Tubules and Caveolae Microdomains.
    Bhogal NK; Hasan A; Gorelik J
    J Cardiovasc Dev Dis; 2018 May; 5(2):. PubMed ID: 29751502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cAMP: novel concepts in compartmentalised signalling.
    Edwards HV; Christian F; Baillie GS
    Semin Cell Dev Biol; 2012 Apr; 23(2):181-90. PubMed ID: 21930230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling.
    Nikolaev VO; Bünemann M; Schmitteckert E; Lohse MJ; Engelhardt S
    Circ Res; 2006 Nov; 99(10):1084-91. PubMed ID: 17038640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compartmentation of cAMP signalling in cardiomyocytes in health and disease.
    Perera RK; Nikolaev VO
    Acta Physiol (Oxf); 2013 Apr; 207(4):650-62. PubMed ID: 23383621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-based biosensors.
    Ghigo A; Mika D
    J Mol Cell Cardiol; 2019 Jun; 131():112-121. PubMed ID: 31028775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDEs create local domains of cAMP signaling.
    Mika D; Leroy J; Vandecasteele G; Fischmeister R
    J Mol Cell Cardiol; 2012 Feb; 52(2):323-9. PubMed ID: 21888909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Role of cyclic nucleotide phosphodiesterases in the cAMP compartmentation in cardiac cells].
    Mika D; Leroy J; Vandecasteele G; Fischmeister R
    Biol Aujourdhui; 2012; 206(1):11-24. PubMed ID: 22463992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compartmentation of cyclic adenosine 3',5'-monophosphate signaling in caveolae.
    Schwencke C; Yamamoto M; Okumura S; Toya Y; Kim SJ; Ishikawa Y
    Mol Endocrinol; 1999 Jul; 13(7):1061-70. PubMed ID: 10406458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. beta(2)-Adrenergic receptor signaling complexes in cardiomyocyte caveolae/lipid rafts.
    Steinberg SF
    J Mol Cell Cardiol; 2004 Aug; 37(2):407-15. PubMed ID: 15276011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cGMP Signaling in the Cardiovascular System-The Role of Compartmentation and Its Live Cell Imaging.
    Bork NI; Nikolaev VO
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29534460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compartmentalisation of cAMP and Ca(2+) signals.
    Zaccolo M; Magalhães P; Pozzan T
    Curr Opin Cell Biol; 2002 Apr; 14(2):160-6. PubMed ID: 11891114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cAMP microdomains and L-type Ca2+ channel regulation in guinea-pig ventricular myocytes.
    Warrier S; Ramamurthy G; Eckert RL; Nikolaev VO; Lohse MJ; Harvey RD
    J Physiol; 2007 May; 580(Pt.3):765-76. PubMed ID: 17289786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolution of cAMP signals in three-dimensional microdomains using novel, real-time sensors.
    Karpen JW; Rich TC
    Proc West Pharmacol Soc; 2004; 47():1-5. PubMed ID: 15633600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caveolae create local signalling domains through their distinct protein content, lipid profile and morphology.
    Harvey RD; Calaghan SC
    J Mol Cell Cardiol; 2012 Feb; 52(2):366-75. PubMed ID: 21782827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDE3 inhibition by C-type natriuretic peptide-induced cGMP enhances cAMP-mediated signaling in both non-failing and failing hearts.
    Meier S; Andressen KW; Aronsen JM; Sjaastad I; Hougen K; Skomedal T; Osnes JB; Qvigstad E; Levy FO; Moltzau LR
    Eur J Pharmacol; 2017 Oct; 812():174-183. PubMed ID: 28697992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of Calcium Fluctuations during Cardiomyocyte Contraction with Real-Time cAMP Dynamics Detected by FRET.
    Sprenger JU; Bork NI; Herting J; Fischer TH; Nikolaev VO
    PLoS One; 2016; 11(12):e0167974. PubMed ID: 27930744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PI3Kgamma is required for PDE4, not PDE3, activity in subcellular microdomains containing the sarcoplasmic reticular calcium ATPase in cardiomyocytes.
    Kerfant BG; Zhao D; Lorenzen-Schmidt I; Wilson LS; Cai S; Chen SR; Maurice DH; Backx PH
    Circ Res; 2007 Aug; 101(4):400-8. PubMed ID: 17615371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoinositide 3-kinase gamma regulates cardiac contractility by locally controlling cyclic adenosine monophosphate levels.
    Kerfant BG; Rose RA; Sun H; Backx PH
    Trends Cardiovasc Med; 2006 Oct; 16(7):250-6. PubMed ID: 16980183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.