These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 32104925)
1. Iodine substituted phosphorus corrole complexes as possible photosensitizers in photodynamic therapy: Insights from theory. Alberto ME; De Simone BC; Liuzzi S; Marino T; Russo N; Toscano M J Comput Chem; 2020 May; 41(14):1395-1401. PubMed ID: 32104925 [TBL] [Abstract][Full Text] [Related]
2. Excitation energies, singlet-triplet energy gaps, spin-orbit matrix elements and heavy atom effects in BOIMPYs as possible photosensitizers for photodynamic therapy: a computational investigation. De Simone BC; Mazzone G; Russo N; Sicilia E; Toscano M Phys Chem Chem Phys; 2018 Jan; 20(4):2656-2661. PubMed ID: 29319078 [TBL] [Abstract][Full Text] [Related]
3. Computational Investigation of the Influence of Halogen Atoms on the Photophysical Properties of Tetraphenylporphyrin and Its Zinc(II) Complexes. De Simone BC; Mazzone G; Russo N; Sicilia E; Toscano M J Phys Chem A; 2018 Mar; 122(10):2809-2815. PubMed ID: 29457905 [TBL] [Abstract][Full Text] [Related]
4. The heavy atom effect on Zn(ii) phthalocyanine derivatives: a theoretical exploration of the photophysical properties. Alberto ME; De Simone BC; Mazzone G; Sicilia E; Russo N Phys Chem Chem Phys; 2015 Sep; 17(36):23595-601. PubMed ID: 26299352 [TBL] [Abstract][Full Text] [Related]
5. Photophysical properties of heavy atom containing tetrasulfonyl phthalocyanines as possible photosensitizers in photodynamic therapy. De Simone BC; Alberto ME; Russo N; Toscano M J Comput Chem; 2021 Sep; 42(25):1803-1808. PubMed ID: 34236090 [TBL] [Abstract][Full Text] [Related]
6. Rational Design of Modified Oxobacteriochlorins as Potential Photodynamic Therapy Photosensitizers. Alberto ME; De Simone BC; Sicilia E; Toscano M; Russo N Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31022831 [TBL] [Abstract][Full Text] [Related]
7. Photophysical Properties of Nitrated and Halogenated Phosphorus Tritolylcorrole Complexes: Insights from Theory. Alberto ME; De Simone BC; Mazzone G; Russo N; Toscano M Molecules; 2018 Oct; 23(11):. PubMed ID: 30373179 [TBL] [Abstract][Full Text] [Related]
8. Theoretical study of C da Rocha VN; Köhler MH; Nagata K; Piquini PC Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 293():122500. PubMed ID: 36827812 [TBL] [Abstract][Full Text] [Related]
9. Theoretical Determination of Electronic Spectra and Intersystem Spin-Orbit Coupling: The Case of Isoindole-BODIPY Dyes. Alberto ME; De Simone BC; Mazzone G; Quartarolo AD; Russo N J Chem Theory Comput; 2014 Sep; 10(9):4006-13. PubMed ID: 26588544 [TBL] [Abstract][Full Text] [Related]
10. Metal Atom Effect on the Photophysical Properties of Mg(II), Zn(II), Cd(II), and Pd(II) Tetraphenylporphyrin Complexes Proposed as Possible Drugs in Photodynamic Therapy. Simone BC; Mazzone G; Russo N; Sicilia E; Toscano M Molecules; 2017 Jun; 22(7):. PubMed ID: 28665328 [TBL] [Abstract][Full Text] [Related]
11. Halogen atom effect on the photophysical properties of substituted aza-BODIPY derivatives. De Simone BC; Mazzone G; Pirillo J; Russo N; Sicilia E Phys Chem Chem Phys; 2017 Jan; 19(3):2530-2536. PubMed ID: 28058418 [TBL] [Abstract][Full Text] [Related]
12. A Local CC2 and TDA-DFT Double Hybrid Study on BODIPY/aza-BODIPY Dimers as Heavy Atom Free Triplet Photosensitizers for Photodynamic Therapy Applications. Momeni MR; Brown A J Phys Chem A; 2016 Apr; 120(16):2550-60. PubMed ID: 27035753 [TBL] [Abstract][Full Text] [Related]
13. Photophysical Heavy-Atom Effect in Iodinated Metallocorroles: Spin-Orbit Coupling and Density of States. Pomarico E; Pospíšil P; Bouduban MEF; Vestfrid J; Gross Z; Záliš S; Chergui M; Vlček A J Phys Chem A; 2018 Sep; 122(37):7256-7266. PubMed ID: 30141941 [TBL] [Abstract][Full Text] [Related]
14. Porphyrins and Metalloporphyrins Combined with N-Heterocyclic Carbene (NHC) Gold(I) Complexes for Photodynamic Therapy Application: What Is the Weight of the Heavy Atom Effect? Scoditti S; Chiodo F; Mazzone G; Richeter S; Sicilia E Molecules; 2022 Jun; 27(13):. PubMed ID: 35807296 [TBL] [Abstract][Full Text] [Related]
15. Theoretical study on photophysical properties of three high water solubility polypyridyl complexes for two-photon photodynamic therapy. Liu YT; Yin X; Lai XY; Wang X Phys Chem Chem Phys; 2018 Jul; 20(26):18074-18081. PubMed ID: 29932200 [TBL] [Abstract][Full Text] [Related]
16. Bisanthracene bis(dicarboxylic imide)s as potential photosensitizers in photodynamic therapy: a theoretical investigation. Alberto ME; Iuga C; Quartarolo AD; Russo N J Chem Inf Model; 2013 Sep; 53(9):2334-40. PubMed ID: 23899186 [TBL] [Abstract][Full Text] [Related]
17. On the origin of photodynamic activity of hypericin and its iodine-containing derivatives. De Simone BC; Mazzone G; Toscano M; Russo N J Comput Chem; 2022 Nov; 43(30):2037-2042. PubMed ID: 36129210 [TBL] [Abstract][Full Text] [Related]
18. Does the Intersystem Crossing Rate of β-Iodinated Phosphorus Corrole Depend on Iodine Numbers and/or Positions? Tedy AM; Manna AK J Phys Chem A; 2023 Dec; 127(48):10118-10127. PubMed ID: 38011309 [TBL] [Abstract][Full Text] [Related]
19. BODIPY for photodynamic therapy applications: computational study of the effect of bromine substitution on Ponte F; Mazzone G; Russo N; Sicilia E J Mol Model; 2018 Jun; 24(7):183. PubMed ID: 29959590 [TBL] [Abstract][Full Text] [Related]
20. Assessing Intersystem Crossing Rates in Donor- and/Acceptor-Functionalized Corroles: A Computational Study. Tedy AM; Ahmed R; Manna AK J Phys Chem A; 2023 Apr; 127(15):3347-3355. PubMed ID: 37014661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]