BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32105404)

  • 1. Chemical Information Exchange in Organized Protocells and Natural Cell Assemblies with Controllable Spatial Positions.
    Wang X; Tian L; Ren Y; Zhao Z; Du H; Zhang Z; Drinkwater BW; Mann S; Han X
    Small; 2020 Jul; 16(27):e1906394. PubMed ID: 32105404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical communication in spatially organized protocell colonies and protocell/living cell micro-arrays.
    Wang X; Tian L; Du H; Li M; Mu W; Drinkwater BW; Han X; Mann S
    Chem Sci; 2019 Nov; 10(41):9446-9453. PubMed ID: 32055320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmed magnetic manipulation of vesicles into spatially coded prototissue architectures arrays.
    Li Q; Li S; Zhang X; Xu W; Han X
    Nat Commun; 2020 Jan; 11(1):232. PubMed ID: 31932592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells.
    Liu S; Zhang Y; Li M; Xiong L; Zhang Z; Yang X; He X; Wang K; Liu J; Mann S
    Nat Chem; 2020 Dec; 12(12):1165-1173. PubMed ID: 33219364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biologically-active unilamellar vesicles from red blood cells.
    Jang HS; Cho YK; Granick S
    Biomater Sci; 2019 Mar; 7(4):1393-1398. PubMed ID: 30663731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells.
    Göpfrich K; Haller B; Staufer O; Dreher Y; Mersdorf U; Platzman I; Spatz JP
    ACS Synth Biol; 2019 May; 8(5):937-947. PubMed ID: 31042361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Triggered Cargo Loading and Division of DNA-Containing Giant Unilamellar Lipid Vesicles.
    Dreher Y; Jahnke K; Schröter M; Göpfrich K
    Nano Lett; 2021 Jul; 21(14):5952-5957. PubMed ID: 34251204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial morphogen-mediated differentiation in synthetic protocells.
    Tian L; Li M; Patil AJ; Drinkwater BW; Mann S
    Nat Commun; 2019 Jul; 10(1):3321. PubMed ID: 31346180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation of Nucleic Acids into Giant Unilamellar Vesicles by Freeze-Thaw: a Way Protocells May Form.
    Qiao H; Hu N; Bai J; Ren L; Liu Q; Fang L; Wang Z
    Orig Life Evol Biosph; 2017 Dec; 47(4):499-510. PubMed ID: 27807660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles.
    Van de Cauter L; Fanalista F; van Buren L; De Franceschi N; Godino E; Bouw S; Danelon C; Dekker C; Koenderink GH; Ganzinger KA
    ACS Synth Biol; 2021 Jul; 10(7):1690-1702. PubMed ID: 34185516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Reconstitution Inside Giant Unilamellar Vesicles.
    Litschel T; Schwille P
    Annu Rev Biophys; 2021 May; 50():525-548. PubMed ID: 33667121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal Propagation of a Minimal Catalytic RNA Network in GUV Protocells by Temperature Cycling and Phase Separation.
    Peter B; Levrier A; Schwille P
    Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202218507. PubMed ID: 36757674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observations of Membrane Domain Reorganization in Mechanically Compressed Artificial Cells.
    Robinson T; Dittrich PS
    Chembiochem; 2019 Oct; 20(20):2666-2673. PubMed ID: 31087814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vesicle-based artificial cells: materials, construction methods and applications.
    Lu Y; Allegri G; Huskens J
    Mater Horiz; 2022 Mar; 9(3):892-907. PubMed ID: 34908080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular Nanoscaffolds within Cytomimetic Protocells as Signal Localization Hubs.
    Magdalena Estirado E; Mason AF; Alemán García MÁ; van Hest JCM; Brunsveld L
    J Am Chem Soc; 2020 May; 142(20):9106-9111. PubMed ID: 32356660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Signal Communication between Two Protoorganelles in a Lipid-Based Artificial Cell.
    Li S; Wang X; Mu W; Han X
    Anal Chem; 2019 May; 91(10):6859-6864. PubMed ID: 31020837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal processing and generation of bioactive nitric oxide in a model prototissue.
    Liu S; Zhang Y; He X; Li M; Huang J; Yang X; Wang K; Mann S; Liu J
    Nat Commun; 2022 Sep; 13(1):5254. PubMed ID: 36068269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile and Programmable Capillary-Induced Assembly of Prototissues via Hanging Drop Arrays.
    Qi C; Ma X; Zhong J; Fang J; Huang Y; Deng X; Kong T; Liu Z
    ACS Nano; 2023 Sep; 17(17):16787-16797. PubMed ID: 37639562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology.
    Matosevic S
    Bioessays; 2012 Nov; 34(11):992-1001. PubMed ID: 22926929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.