These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3210541)

  • 1. Fatty acid oxidation in the myocardium: effects of parathyroid hormone and CRF.
    Smogorzewski M; Perna AF; Borum PR; Massry SG
    Kidney Int; 1988 Dec; 34(6):797-803. PubMed ID: 3210541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic renal failure, parathyroid hormone and fatty acids oxidation in skeletal muscle.
    Smogorzewski M; Piskorska G; Borum PR; Massry SG
    Kidney Int; 1988 Feb; 33(2):555-60. PubMed ID: 3361755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of verapamil on the abnormalities in fatty acid oxidation of myocardium.
    Perna AF; Smogorzewski M; Massry SG
    Kidney Int; 1989 Sep; 36(3):453-7. PubMed ID: 2593489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Verapamil reverses PTH- or CRF-induced abnormal fatty acid oxidation in muscle.
    Perna AF; Smogorzewski M; Massry SG
    Kidney Int; 1988 Dec; 34(6):774-8. PubMed ID: 3210537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Etomoxir-induced partial carnitine palmitoyltransferase-I (CPT-I) inhibition in vivo does not alter cardiac long-chain fatty acid uptake and oxidation rates.
    Luiken JJ; Niessen HE; Coort SL; Hoebers N; Coumans WA; Schwenk RW; Bonen A; Glatz JF
    Biochem J; 2009 Apr; 419(2):447-55. PubMed ID: 19138173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In obese Zucker rats, lipids accumulate in the heart despite normal mitochondrial content, morphology and long-chain fatty acid oxidation.
    Holloway GP; Snook LA; Harris RJ; Glatz JF; Luiken JJ; Bonen A
    J Physiol; 2011 Jan; 589(Pt 1):169-80. PubMed ID: 21041527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin release from pancreatic islets: effects of CRF and excess PTH.
    Fadda GZ; Akmal M; Premdas FH; Lipson LG; Massry SG
    Kidney Int; 1988 Jun; 33(6):1066-72. PubMed ID: 3043075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of chronic renal failure and parathyroid hormone on phospholipid content of brain synaptosomes.
    Islam A; Smogorzewski M; Massry SG
    Am J Physiol; 1989 Apr; 256(4 Pt 2):F705-10. PubMed ID: 2705541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute and chronic effects of adriamycin on fatty acid oxidation in isolated cardiac myocytes.
    Abdel-aleem S; el-Merzabani MM; Sayed-Ahmed M; Taylor DA; Lowe JE
    J Mol Cell Cardiol; 1997 Feb; 29(2):789-97. PubMed ID: 9140835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated peroxisomal fatty acid metabolism improves cardiac recovery in ischemia-reperfusion.
    Liepinsh E; Skapare E; Kuka J; Makrecka M; Cirule H; Vavers E; Sevostjanovs E; Grinberga S; Pugovics O; Dambrova M
    Naunyn Schmiedebergs Arch Pharmacol; 2013 Jun; 386(6):541-50. PubMed ID: 23525500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of chronic renal failure on heart. Role of secondary hyperparathyroidism.
    el-Belbessi S; Brautbar N; Anderson K; Campese VM; Massry SG
    Am J Nephrol; 1986; 6(5):369-75. PubMed ID: 3826135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PTH, chronic renal failure and myocardium.
    Smogorzewski M
    Miner Electrolyte Metab; 1995; 21(1-3):55-62. PubMed ID: 7565463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperthyroidism facilitates cardiac fatty acid oxidation through altered regulation of cardiac carnitine palmitoyltransferase: studies in vivo and with cardiac myocytes.
    Sugden MC; Priestman DA; Orfali KA; Holness MJ
    Horm Metab Res; 1999 May; 31(5):300-6. PubMed ID: 10422724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of methylglyoxal bis(guanylhydrazone) on hepatic, heart and skeletal muscle mitochondrial carnitine palmitoyltransferase and beta-oxidation of fatty acids.
    Brady LJ; Brady PS; Gandour RD
    Biochem Pharmacol; 1987 Feb; 36(4):447-52. PubMed ID: 3827937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoregulation in the parathyroid glands by PTH/PTHrP receptor ligands in normal and uremic rats.
    Lewin E; Garfia B; Almaden Y; Rodriguez M; Olgaard K
    Kidney Int; 2003 Jul; 64(1):63-70. PubMed ID: 12787396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carnitine palmitoyl transferase I: Conformational changes induced by long-chain fatty acyl CoA ligands.
    Lopes VG; Filho ABC; Yoshinaga MY; Hirata MH; Ferreira GM
    J Mol Graph Model; 2022 May; 112():108125. PubMed ID: 35101729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired activity of alpha-ketoglutarate dehydrogenase of heart mitochondria in chronic renal failure: role of secondary hyperparathyroidism.
    Perna AF; Zayed MA; Massry SG
    Nephron; 1991; 59(2):221-5. PubMed ID: 1956483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sarcolemmal fatty acid uptake vs. mitochondrial beta-oxidation as target to regress cardiac insulin resistance.
    Luiken JJ
    Appl Physiol Nutr Metab; 2009 Jun; 34(3):473-80. PubMed ID: 19448717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parathyroid hormone metabolism and its potential as a uremic toxin.
    Slatopolsky E; Martin K; Hruska K
    Am J Physiol; 1980 Jul; 239(1):F1-12. PubMed ID: 6994509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parathyroid hormone interferes with extrarenal disposition of potassium in chronic renal failure.
    Soliman AR; Akmal M; Massry SG
    Nephron; 1989; 52(3):262-7. PubMed ID: 2739866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.