These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

752 related articles for article (PubMed ID: 32105488)

  • 1. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules.
    Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F
    J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling Natural Orbital Functional Theory and Many-Body Perturbation Theory by Using Nondynamically Correlated Canonical Orbitals.
    Rodríguez-Mayorga M; Mitxelena I; Bruneval F; Piris M
    J Chem Theory Comput; 2021 Dec; 17(12):7562-7574. PubMed ID: 34806362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.
    Burow AM; Bates JE; Furche F; Eshuis H
    J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explicitly Correlated Dispersion and Exchange Dispersion Energies in Symmetry-Adapted Perturbation Theory.
    Kodrycka M; Holzer C; Klopper W; Patkowski K
    J Chem Theory Comput; 2019 Nov; 15(11):5965-5986. PubMed ID: 31503481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication: Random phase approximation renormalized many-body perturbation theory.
    Bates JE; Furche F
    J Chem Phys; 2013 Nov; 139(17):171103. PubMed ID: 24206280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel.
    Bleiziffer P; Krug M; Görling A
    J Chem Phys; 2015 Jun; 142(24):244108. PubMed ID: 26133411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the accuracy of DFT-SAPT, MP2, SCS-MP2, MP2C, and DFT+Disp methods for the interaction energies of endohedral complexes of the C(60) fullerene with a rare gas atom.
    Hesselmann A; Korona T
    Phys Chem Chem Phys; 2011 Jan; 13(2):732-43. PubMed ID: 21046038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetry-adapted perturbation theory with Kohn-Sham orbitals using non-empirically tuned, long-range-corrected density functionals.
    Lao KU; Herbert JM
    J Chem Phys; 2014 Jan; 140(4):044108. PubMed ID: 25669506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and Energetics of Complexes of B12N12 with Hydrogen Halides-SAPT(DFT) and MP2 Study.
    Yourdkhani S; Korona T; Hadipour NL
    J Phys Chem A; 2015 Jun; 119(24):6446-67. PubMed ID: 25973745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Description of Intra- and Intermolecular Interactions through Dispersion-Corrected Second-Order Møller-Plesset Perturbation Theory.
    Beran GJO; Greenwell C; Cook C; Řezáč J
    Acc Chem Res; 2023 Dec; 56(23):3525-3534. PubMed ID: 37963266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate calculation and modeling of the adiabatic connection in density functional theory.
    Teale AM; Coriani S; Helgaker T
    J Chem Phys; 2010 Apr; 132(16):164115. PubMed ID: 20441266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate description of intermolecular interactions involving ions using symmetry-adapted perturbation theory.
    Lao KU; Schäffer R; Jansen G; Herbert JM
    J Chem Theory Comput; 2015 Jun; 11(6):2473-86. PubMed ID: 26575547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Description of noncovalent interactions involving π-system with high precision: An assessment of RPA, MP2, and DFT-D methods.
    Su H; Wang H; Wang H; Lu Y; Zhu Z
    J Comput Chem; 2019 Jun; 40(17):1643-1651. PubMed ID: 30937960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the domain-based local pair natural orbital (DLPNO) approximation for non-covalent interactions in sizable supramolecular complexes.
    Gray M; Herbert JM
    J Chem Phys; 2024 Aug; 161(5):. PubMed ID: 39105555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MP2.5 and MP2.X: approaching CCSD(T) quality description of noncovalent interaction at the cost of a single CCSD iteration.
    Sedlak R; Riley KE; Řezáč J; Pitoňák M; Hobza P
    Chemphyschem; 2013 Mar; 14(4):698-707. PubMed ID: 23315749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How accurate is the density functional theory combined with symmetry-adapted perturbation theory approach for CH-pi and pi-pi interactions? A comparison to supermolecular calculations for the acetylene-benzene dimer.
    Tekin A; Jansen G
    Phys Chem Chem Phys; 2007 Apr; 9(14):1680-7. PubMed ID: 17396179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmark CCSD-SAPT study of rare gas dimers with comparison to MP-SAPT and DFT-SAPT.
    Shirkov L; Sladek V
    J Chem Phys; 2017 Nov; 147(17):174103. PubMed ID: 29117694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.