These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32105491)

  • 1. Broadband Tunable Mid-infrared Plasmon Resonances in Cadmium Oxide Nanocrystals Induced by Size-Dependent Nonstoichiometry.
    Liu Z; Zhong Y; Shafei I; Jeong S; Wang L; Nguyen HT; Sun CJ; Li T; Chen J; Chen L; Losovyj Y; Gao X; Ma W; Ye X
    Nano Lett; 2020 Apr; 20(4):2821-2828. PubMed ID: 32105491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition between Depletion Effects and Coupling in the Plasmon Modulation of Doped Metal Oxide Nanocrystals.
    Tandon B; Agrawal A; Heo S; Milliron DJ
    Nano Lett; 2019 Mar; 19(3):2012-2019. PubMed ID: 30794418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals.
    Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T
    ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping.
    Ye X; Fei J; Diroll BT; Paik T; Murray CB
    J Am Chem Soc; 2014 Aug; 136(33):11680-6. PubMed ID: 25066599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.
    Greenberg BL; Ganguly S; Held JT; Kramer NJ; Mkhoyan KA; Aydil ES; Kortshagen UR
    Nano Lett; 2015 Dec; 15(12):8162-9. PubMed ID: 26551232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals.
    Zandi O; Agrawal A; Shearer AB; Reimnitz LC; Dahlman CJ; Staller CM; Milliron DJ
    Nat Mater; 2018 Aug; 17(8):710-717. PubMed ID: 29988146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Analysis of Extinction Coefficients of Tin-Doped Indium Oxide Nanocrystal Ensembles.
    Staller CM; Gibbs SL; Saez Cabezas CA; Milliron DJ
    Nano Lett; 2019 Nov; 19(11):8149-8154. PubMed ID: 31657940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Near-Infrared Localized Surface Plasmon Resonance of F, In-Codoped CdO Nanocrystals.
    Giannuzzi R; De Donato F; De Trizio L; Monteduro AG; Maruccio G; Scarfiello R; Qualtieri A; Manna L
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39921-39929. PubMed ID: 31577409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultranarrow Mid-infrared Quantum Plasmon Resonance of Self-Doped Silver Selenide Nanocrystal.
    Song H; Lee JH; Eom SY; Choi D; Jeong KS
    ACS Nano; 2023 Sep; 17(17):16895-16903. PubMed ID: 37579184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimum Line Width of Surface Plasmon Resonance in Doped ZnO Nanocrystals.
    Delerue C
    Nano Lett; 2017 Dec; 17(12):7599-7605. PubMed ID: 29190107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defect Engineering in Plasmonic Metal Oxide Nanocrystals.
    Runnerstrom EL; Bergerud A; Agrawal A; Johns RW; Dahlman CJ; Singh A; Selbach SM; Milliron DJ
    Nano Lett; 2016 May; 16(5):3390-8. PubMed ID: 27111427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand Tuning of Localized Surface Plasmon Resonances in Antimony-Doped Tin Oxide Nanocrystals.
    Balitskii O; Mashkov O; Barabash A; Rehm V; Afify HA; Li N; Hammer MS; Brabec CJ; Eigen A; Halik M; Yarema O; Yarema M; Wood V; Stifter D; Heiss W
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrally tunable infrared plasmonic F,Sn:In
    Cho SH; Roccapriore KM; Dass CK; Ghosh S; Choi J; Noh J; Reimnitz LC; Heo S; Kim K; Xie K; Korgel BA; Li X; Hendrickson JR; Hachtel JA; Milliron DJ
    J Chem Phys; 2020 Jan; 152(1):014709. PubMed ID: 31914766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seeded growth of metal-doped plasmonic oxide heterodimer nanocrystals and their chemical transformation.
    Ye X; Reifsnyder Hickey D; Fei J; Diroll BT; Paik T; Chen J; Murray CB
    J Am Chem Soc; 2014 Apr; 136(13):5106-15. PubMed ID: 24628516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions.
    Liu Z; Zhong Y; Shafei I; Borman R; Jeong S; Chen J; Losovyj Y; Gao X; Li N; Du Y; Sarnello E; Li T; Su D; Ma W; Ye X
    Nat Commun; 2019 Mar; 10(1):1394. PubMed ID: 30918244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of adjustable localized surface plasmon resonance in ZnO nanocrystals via a dual doping approach.
    Yibi Y; Chen J; Xue J; Song J; Zeng H
    Sci Bull (Beijing); 2017 May; 62(10):693-699. PubMed ID: 36659440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable mid IR plasmon in GZO nanocrystals.
    Hamza MK; Bluet JM; Masenelli-Varlot K; Canut B; Boisron O; Melinon P; Masenelli B
    Nanoscale; 2015 Jul; 7(28):12030-7. PubMed ID: 26111776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tight-binding calculations of the optical response of optimally P-doped Si nanocrystals: a model for localized surface plasmon resonance.
    Pi X; Delerue C
    Phys Rev Lett; 2013 Oct; 111(17):177402. PubMed ID: 24206519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals.
    Agrawal A; Cho SH; Zandi O; Ghosh S; Johns RW; Milliron DJ
    Chem Rev; 2018 Mar; 118(6):3121-3207. PubMed ID: 29400955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radial Dopant Placement for Tuning Plasmonic Properties in Metal Oxide Nanocrystals.
    Crockett BM; Jansons AW; Koskela KM; Johnson DW; Hutchison JE
    ACS Nano; 2017 Aug; 11(8):7719-7728. PubMed ID: 28718619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.