These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 32105707)
1. FGF6 enhances muscle regeneration after nerve injury by relying on ERK1/2 mechanism. Cai Q; Wu G; Zhu M; Ge H; Xue C; Zhang Q; Cheng B; Xu S; Wu P Life Sci; 2020 May; 248():117465. PubMed ID: 32105707 [TBL] [Abstract][Full Text] [Related]
2. LRTM1 promotes the differentiation of myoblast cells by negatively regulating the FGFR1 signaling pathway. Li HK; Zhou Y; Ding J; Xiong L; Shi YX; He YJ; Yang D; Deng ZL; Nie M; Fei Gao Y Exp Cell Res; 2020 Nov; 396(1):112237. PubMed ID: 32841643 [TBL] [Abstract][Full Text] [Related]
3. Injection of FGF6 accelerates regeneration of the soleus muscle in adult mice. Armand AS; Launay T; Pariset C; Della Gaspera B; Charbonnier F; Chanoine C Biochim Biophys Acta; 2003 Sep; 1642(1-2):97-105. PubMed ID: 12972298 [TBL] [Abstract][Full Text] [Related]
4. Differential adaptation of growth and differentiation factor 8/myostatin, fibroblast growth factor 6 and leukemia inhibitory factor in overloaded, regenerating and denervated rat muscles. Sakuma K; Watanabe K; Sano M; Uramoto I; Totsuka T Biochim Biophys Acta; 2000 Jun; 1497(1):77-88. PubMed ID: 10838161 [TBL] [Abstract][Full Text] [Related]
5. S100B engages RAGE or bFGF/FGFR1 in myoblasts depending on its own concentration and myoblast density. Implications for muscle regeneration. Riuzzi F; Sorci G; Beccafico S; Donato R PLoS One; 2012; 7(1):e28700. PubMed ID: 22276098 [TBL] [Abstract][Full Text] [Related]
6. Calpain 3 Expression Pattern during Gastrocnemius Muscle Atrophy and Regeneration Following Sciatic Nerve Injury in Rats. Wu R; Yan Y; Yao J; Liu Y; Zhao J; Liu M Int J Mol Sci; 2015 Nov; 16(11):26927-35. PubMed ID: 26569227 [TBL] [Abstract][Full Text] [Related]
7. Slow-Myofiber Commitment by Semaphorin 3A Secreted from Myogenic Stem Cells. Tatsumi R; Suzuki T; Do MQ; Ohya Y; Anderson JE; Shibata A; Kawaguchi M; Ohya S; Ohtsubo H; Mizunoya W; Sawano S; Komiya Y; Ichitsubo R; Ojima K; Nishimatsu SI; Nohno T; Ohsawa Y; Sunada Y; Nakamura M; Furuse M; Ikeuchi Y; Nishimura T; Yagi T; Allen RE Stem Cells; 2017 Jul; 35(7):1815-1834. PubMed ID: 28480592 [TBL] [Abstract][Full Text] [Related]
8. De-phosphorylation of MyoD is linking nerve-evoked activity to fast myosin heavy chain expression in rodent adult skeletal muscle. Ekmark M; Rana ZA; Stewart G; Hardie DG; Gundersen K J Physiol; 2007 Oct; 584(Pt 2):637-50. PubMed ID: 17761773 [TBL] [Abstract][Full Text] [Related]
9. Guanidinoacetic Acid Regulates Myogenic Differentiation and Muscle Growth Through miR-133a-3p and miR-1a-3p Co-mediated Akt/mTOR/S6K Signaling Pathway. Wang Y; Ma J; Qiu W; Zhang J; Feng S; Zhou X; Wang X; Jin L; Long K; Liu L; Xiao W; Tang Q; Zhu L; Jiang Y; Li X; Li M Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30235878 [TBL] [Abstract][Full Text] [Related]
10. FGF6 regulates muscle differentiation through a calcineurin-dependent pathway in regenerating soleus of adult mice. Armand AS; Pariset C; Laziz I; Launay T; Fiore F; Della Gaspera B; Birnbaum D; Charbonnier F; Chanoine C J Cell Physiol; 2005 Jul; 204(1):297-308. PubMed ID: 15672378 [TBL] [Abstract][Full Text] [Related]
11. Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. Zhang C; Li Y; Wu Y; Wang L; Wang X; Du J J Biol Chem; 2013 Jan; 288(3):1489-99. PubMed ID: 23184935 [TBL] [Abstract][Full Text] [Related]
12. Effects of myogenin on muscle fiber types and key metabolic enzymes in gene transfer mice and C2C12 myoblasts. Zhu LN; Ren Y; Chen JQ; Wang YZ Gene; 2013 Dec; 532(2):246-52. PubMed ID: 24055422 [TBL] [Abstract][Full Text] [Related]
13. NADPH Oxidase 4 Contributes to Myoblast Fusion and Skeletal Muscle Regeneration. Youm TH; Woo SH; Kwon ES; Park SS Oxid Med Cell Longev; 2019; 2019():3585390. PubMed ID: 31827673 [TBL] [Abstract][Full Text] [Related]
14. Histone methyltransferase Setd2 is critical for the proliferation and differentiation of myoblasts. Yi X; Tao Y; Lin X; Dai Y; Yang T; Yue X; Jiang X; Li X; Jiang DS; Andrade KC; Chang J Biochim Biophys Acta Mol Cell Res; 2017 Apr; 1864(4):697-707. PubMed ID: 28130125 [TBL] [Abstract][Full Text] [Related]
15. Magnesium deficiency up-regulates Myod expression in rat skeletal muscle and C2C12 myogenic cells. Furutani Y; Funaba M; Matsui T Cell Biochem Funct; 2011 Oct; 29(7):577-81. PubMed ID: 21858842 [TBL] [Abstract][Full Text] [Related]
16. Osteocalcin Induces Proliferation via Positive Activation of the PI3K/Akt, P38 MAPK Pathways and Promotes Differentiation Through Activation of the GPRC6A-ERK1/2 Pathway in C2C12 Myoblast Cells. Liu S; Gao F; Wen L; Ouyang M; Wang Y; Wang Q; Luo L; Jian Z Cell Physiol Biochem; 2017; 43(3):1100-1112. PubMed ID: 28977794 [TBL] [Abstract][Full Text] [Related]
17. Nerve activity-independent regulation of skeletal muscle atrophy: role of MyoD and myogenin in satellite cells and myonuclei. Hyatt JP; Roy RR; Baldwin KM; Edgerton VR Am J Physiol Cell Physiol; 2003 Nov; 285(5):C1161-73. PubMed ID: 12839833 [TBL] [Abstract][Full Text] [Related]
18. Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. Kästner S; Elias MC; Rivera AJ; Yablonka-Reuveni Z J Histochem Cytochem; 2000 Aug; 48(8):1079-96. PubMed ID: 10898801 [TBL] [Abstract][Full Text] [Related]
20. [EFFECT OF PASSIVE MOVEMENT ON EXPRESSION OF miRNA-1 AND DIFFERENTIATION OF MYOBLASTS IN DENERVATION-INDUCED SKELETAL MUSCLE ATROPHY IN RATS]. Liu Z; Zhang W; Huang Q; Li G; Chen Z; Wei J; Liang B Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 May; 30(5):612-618. PubMed ID: 29786306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]