These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 32105731)

  • 1. Distinct Features of Stress Granule Proteins Predict Localization in Membraneless Organelles.
    Kuechler ER; Budzyńska PM; Bernardini JP; Gsponer J; Mayor T
    J Mol Biol; 2020 Mar; 432(7):2349-2368. PubMed ID: 32105731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GraPES: The Granule Protein Enrichment Server for prediction of biological condensate constituents.
    Kuechler ER; Jacobson M; Mayor T; Gsponer J
    Nucleic Acids Res; 2022 Jul; 50(W1):W384-W391. PubMed ID: 35474477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sky1: at the intersection of prion-like proteins and stress granule regulation.
    Shattuck JE; Cascarina SM; Paul KR; Ross ED
    Curr Genet; 2020 Jun; 66(3):463-468. PubMed ID: 31745569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of yeast and mammalian stress granule cores.
    Wheeler JR; Jain S; Khong A; Parker R
    Methods; 2017 Aug; 126():12-17. PubMed ID: 28457979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The prion-like protein kinase Sky1 is required for efficient stress granule disassembly.
    Shattuck JE; Paul KR; Cascarina SM; Ross ED
    Nat Commun; 2019 Aug; 10(1):3614. PubMed ID: 31399582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition-based prediction and rational manipulation of prion-like domain recruitment to stress granules.
    Boncella AE; Shattuck JE; Cascarina SM; Paul KR; Baer MH; Fomicheva A; Lamb AK; Ross ED
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5826-5835. PubMed ID: 32127480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Friend or foe-Post-translational modifications as regulators of phase separation and RNP granule dynamics.
    Hofweber M; Dormann D
    J Biol Chem; 2019 May; 294(18):7137-7150. PubMed ID: 30587571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of Stress Granule and P-Body Proteomes.
    Youn JY; Dyakov BJA; Zhang J; Knight JDR; Vernon RM; Forman-Kay JD; Gingras AC
    Mol Cell; 2019 Oct; 76(2):286-294. PubMed ID: 31626750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Hybrid-Body Containing Constituents of Both P-Bodies and Stress Granules Forms in Response to Hypoosmotic Stress in Saccharomyces cerevisiae.
    Shah KH; Varia SN; Cook LA; Herman PK
    PLoS One; 2016; 11(6):e0158776. PubMed ID: 27359124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct stages in stress granule assembly and disassembly.
    Wheeler JR; Matheny T; Jain S; Abrisch R; Parker R
    Elife; 2016 Sep; 5():. PubMed ID: 27602576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Prions to Stress Granules: Defining the Compositional Features of Prion-Like Domains That Promote Different Types of Assemblies.
    Fomicheva A; Ross ED
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33513942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composition-dependent thermodynamics of intracellular phase separation.
    Riback JA; Zhu L; Ferrolino MC; Tolbert M; Mitrea DM; Sanders DW; Wei MT; Kriwacki RW; Brangwynne CP
    Nature; 2020 May; 581(7807):209-214. PubMed ID: 32405004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation Between Stress Granules and Cytoplasmic Protein Aggregates Linked to Neurodegenerative Diseases.
    Dobra I; Pankivskyi S; Samsonova A; Pastre D; Hamon L
    Curr Neurol Neurosci Rep; 2018 Nov; 18(12):107. PubMed ID: 30406848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular stress leads to the formation of membraneless stress assemblies in eukaryotic cells.
    van Leeuwen W; Rabouille C
    Traffic; 2019 Sep; 20(9):623-638. PubMed ID: 31152627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ubiquitin Modulates Liquid-Liquid Phase Separation of UBQLN2 via Disruption of Multivalent Interactions.
    Dao TP; Kolaitis RM; Kim HJ; O'Donovan K; Martyniak B; Colicino E; Hehnly H; Taylor JP; Castañeda CA
    Mol Cell; 2018 Mar; 69(6):965-978.e6. PubMed ID: 29526694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast.
    Yamamoto Y; Izawa S
    Genes Cells; 2013 Nov; 18(11):974-84. PubMed ID: 24033457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome.
    Van Treeck B; Protter DSW; Matheny T; Khong A; Link CD; Parker R
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):2734-2739. PubMed ID: 29483269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FAM98A is localized to stress granules and associates with multiple stress granule-localized proteins.
    Ozeki K; Sugiyama M; Akter KA; Nishiwaki K; Asano-Inami E; Senga T
    Mol Cell Biochem; 2019 Jan; 451(1-2):107-115. PubMed ID: 29992460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperosmotic phase separation: Condensates beyond inclusions, granules and organelles.
    Jalihal AP; Schmidt A; Gao G; Little SR; Pitchiaya S; Walter NG
    J Biol Chem; 2021; 296():100044. PubMed ID: 33168632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collective Learnings of Studies of Stress Granule Assembly and Composition.
    Sidibé H; Vande Velde C
    Methods Mol Biol; 2022; 2428():199-228. PubMed ID: 35171482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.