BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32105734)

  • 21. Engineered photoreceptors as novel optogenetic tools.
    Möglich A; Moffat K
    Photochem Photobiol Sci; 2010 Oct; 9(10):1286-300. PubMed ID: 20835487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications.
    Etzl S; Lindner R; Nelson MD; Winkler A
    J Biol Chem; 2018 Jun; 293(23):9078-9089. PubMed ID: 29695503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and evolutionary aspects of algal blue light receptors of the cryptochrome and aureochrome type.
    Essen LO; Franz S; Banerjee A
    J Plant Physiol; 2017 Oct; 217():27-37. PubMed ID: 28756992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-Induced Change of Arginine Conformation Modulates the Rate of Adenosine Triphosphate to Cyclic Adenosine Monophosphate Conversion in the Optogenetic System Containing Photoactivated Adenylyl Cyclase.
    Khrenova MG; Kulakova AM; Nemukhin AV
    J Chem Inf Model; 2021 Mar; 61(3):1215-1225. PubMed ID: 33677973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-cell infrared difference spectroscopy of LOV photoreceptors reveals structural responses to light altered in living cells.
    Goett-Zink L; Klocke JL; Bögeholz LAK; Kottke T
    J Biol Chem; 2020 Aug; 295(33):11729-11741. PubMed ID: 32580943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light-induced structural changes in a short light, oxygen, voltage (LOV) protein revealed by molecular dynamics simulations-implications for the understanding of LOV photoactivation.
    Bocola M; Schwaneberg U; Jaeger KE; Krauss U
    Front Mol Biosci; 2015; 2():55. PubMed ID: 26484348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural Resources for Optogenetic Tools.
    Mathes T
    Methods Mol Biol; 2016; 1408():19-36. PubMed ID: 26965113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical Control of Transcription: Genetically Encoded Photoswitchable Variants of T7 RNA Polymerase.
    Seifert S; Ehrt C; Lückfeldt L; Lubeck M; Schramm F; Brakmann S
    Chembiochem; 2019 Nov; 20(22):2813-2817. PubMed ID: 31192518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LOVTRAP: an optogenetic system for photoinduced protein dissociation.
    Wang H; Vilela M; Winkler A; Tarnawski M; Schlichting I; Yumerefendi H; Kuhlman B; Liu R; Danuser G; Hahn KM
    Nat Methods; 2016 Sep; 13(9):755-8. PubMed ID: 27427858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enlightening Allostery: Designing Switchable Proteins by Photoreceptor Fusion.
    Mathony J; Niopek D
    Adv Biol (Weinh); 2021 May; 5(5):e2000181. PubMed ID: 33107225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Aureochrome Photoreceptor PtAUREO1a Is a Highly Effective Blue Light Switch in Diatoms.
    Mann M; Serif M; Wrobel T; Eisenhut M; Madhuri S; Flachbart S; Weber APM; Lepetit B; Wilhelm C; Kroth PG
    iScience; 2020 Nov; 23(11):101730. PubMed ID: 33235981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-Oxygen-Voltage (LOV)-sensing Domains: Activation Mechanism and Optogenetic Stimulation.
    Flores-Ibarra A; Maia RNA; Olasz B; Church JR; Gotthard G; Schapiro I; Heberle J; Nogly P
    J Mol Biol; 2024 Mar; 436(5):168356. PubMed ID: 37944792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The rise and shine of yeast optogenetics.
    Figueroa D; Rojas V; Romero A; Larrondo LF; Salinas F
    Yeast; 2021 Feb; 38(2):131-146. PubMed ID: 33119964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Guidelines for Photoreceptor Engineering.
    Ziegler T; Schumacher CH; Möglich A
    Methods Mol Biol; 2016; 1408():389-403. PubMed ID: 26965138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allosterically regulated unfolding of the A'α helix exposes the dimerization site of the blue-light-sensing aureochrome-LOV domain.
    Herman E; Kottke T
    Biochemistry; 2015 Feb; 54(7):1484-92. PubMed ID: 25621532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aureochrome 1 illuminated: structural changes of a transcription factor probed by molecular spectroscopy.
    Kerruth S; Ataka K; Frey D; Schlichting I; Heberle J
    PLoS One; 2014; 9(7):e103307. PubMed ID: 25058114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of promoter targets by Aureochrome 1a in the diatom Phaeodactylum tricornutum.
    Im SH; Lepetit B; Mosesso N; Shrestha S; Weiss L; Nymark M; Roellig R; Wilhelm C; Isono E; Kroth PG
    J Exp Bot; 2024 Mar; 75(7):1834-1851. PubMed ID: 38066674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional demonstration of Aureochrome 1a proteasomal degradation after blue light incubation in the diatom Phaeodactylum tricornutum.
    Im SH; Madhuri S; Lepetit B; Kroth PG
    J Plant Physiol; 2024 Jan; 292():154148. PubMed ID: 38101100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine Learning-Assisted Engineering of Light, Oxygen, Voltage Photoreceptor Adduct Lifetime.
    Hemmer S; Siedhoff NE; Werner S; Ölçücü G; Schwaneberg U; Jaeger KE; Davari MD; Krauss U
    JACS Au; 2023 Dec; 3(12):3311-3323. PubMed ID: 38155650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Mechanism of Light-Induced Conformational Switching of the LOV Domain in Aureochrome-1.
    Kobayashi I; Nakajima H; Hisatomi O
    Biochemistry; 2020 Jul; 59(28):2592-2601. PubMed ID: 32567839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.