These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32105734)

  • 41. Machine Learning-Assisted Engineering of Light, Oxygen, Voltage Photoreceptor Adduct Lifetime.
    Hemmer S; Siedhoff NE; Werner S; Ölçücü G; Schwaneberg U; Jaeger KE; Davari MD; Krauss U
    JACS Au; 2023 Dec; 3(12):3311-3323. PubMed ID: 38155650
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular Mechanism of Light-Induced Conformational Switching of the LOV Domain in Aureochrome-1.
    Kobayashi I; Nakajima H; Hisatomi O
    Biochemistry; 2020 Jul; 59(28):2592-2601. PubMed ID: 32567839
    [TBL] [Abstract][Full Text] [Related]  

  • 43. LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling.
    Pudasaini A; El-Arab KK; Zoltowski BD
    Front Mol Biosci; 2015; 2():18. PubMed ID: 25988185
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: phototropin, ZTL/FKF1/LKP2 and aureochrome.
    Suetsugu N; Wada M
    Plant Cell Physiol; 2013 Jan; 54(1):8-23. PubMed ID: 23220691
    [TBL] [Abstract][Full Text] [Related]  

  • 45. UVB-based optogenetic tools.
    Kianianmomeni A
    Trends Biotechnol; 2015 Feb; 33(2):59-61. PubMed ID: 24985334
    [No Abstract]   [Full Text] [Related]  

  • 46. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools.
    Shcherbakova DM; Shemetov AA; Kaberniuk AA; Verkhusha VV
    Annu Rev Biochem; 2015; 84():519-50. PubMed ID: 25706899
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optogenetic switches for light-controlled gene expression in yeast.
    Salinas F; Rojas V; Delgado V; Agosin E; Larrondo LF
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2629-2640. PubMed ID: 28210796
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dimeric Structure of the Blue Light Sensor Protein Photozipper in the Active State.
    Ozeki K; Tsukuno H; Nagashima H; Hisatomi O; Mino H
    Biochemistry; 2018 Feb; 57(5):494-497. PubMed ID: 29261300
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro.
    Harmer ZP; Thompson JC; Cole DL; Venturelli OS; Zavala VM; McClean MN
    ACS Synth Biol; 2024 May; 13(5):1424-1433. PubMed ID: 38684225
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural Basis of Design and Engineering for Advanced Plant Optogenetics.
    Banerjee S; Mitra D
    Trends Plant Sci; 2020 Jan; 25(1):35-65. PubMed ID: 31699521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expression, purification, and spectral tuning of RhoGC, a retinylidene/guanylyl cyclase fusion protein and optogenetics tool from the aquatic fungus
    Trieu MM; Devine EL; Lamarche LB; Ammerman AE; Greco JA; Birge RR; Theobald DL; Oprian DD
    J Biol Chem; 2017 Jun; 292(25):10379-10389. PubMed ID: 28473465
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Light at the End of the Protein: Crystal Structure of a C-Terminal Light-Sensing Domain.
    Janovjak H
    Structure; 2016 Feb; 24(2):213-5. PubMed ID: 26840826
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Network analysis of chromophore binding site in LOV domain.
    Panda R; Panda PK; Krishnamoorthy J; Kar RK
    Comput Biol Med; 2023 Jul; 161():106996. PubMed ID: 37201443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lustro: High-Throughput Optogenetic Experiments Enabled by Automation and a Yeast Optogenetic Toolkit.
    Harmer ZP; McClean MN
    ACS Synth Biol; 2023 Jul; 12(7):1943-1951. PubMed ID: 37434272
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Arguments for an additional long-lived intermediate in the photocycle of the full-length aureochrome 1c receptor: A time-resolved small-angle X-ray scattering study.
    Bannister S; Böhm E; Zinn T; Hellweg T; Kottke T
    Struct Dyn; 2019 May; 6(3):034701. PubMed ID: 31263739
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optogenetics: optical control of a photoactivatable Rac in living cells.
    Yin T; Wu YI
    Methods Mol Biol; 2015; 1251():277-89. PubMed ID: 25391805
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biochemical Characterization of the Engineered Soluble Photoactivated Guanylate Cyclases from Microbes Expands Optogenetic Tools.
    Tanwar M; Sharma K; Moar P; Kateriya S
    Appl Biochem Biotechnol; 2018 Aug; 185(4):1014-1028. PubMed ID: 29404907
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization and engineering of photoactivated adenylyl cyclases.
    Stüven B; Stabel R; Ohlendorf R; Beck J; Schubert R; Möglich A
    Biol Chem; 2019 Feb; 400(3):429-441. PubMed ID: 30763033
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Blue light-induced conformational changes in a light-regulated transcription factor, aureochrome-1.
    Hisatomi O; Takeuchi K; Zikihara K; Ookubo Y; Nakatani Y; Takahashi F; Tokutomi S; Kataoka H
    Plant Cell Physiol; 2013 Jan; 54(1):93-106. PubMed ID: 23220692
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Model-guided optogenetic study of PKA signaling in budding yeast.
    Stewart-Ornstein J; Chen S; Bhatnagar R; Weissman JS; El-Samad H
    Mol Biol Cell; 2017 Jan; 28(1):221-227. PubMed ID: 28035051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.