These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32105818)

  • 21. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.
    Backman DE; LeSavage BL; Shah SB; Wong JY
    Macromol Biosci; 2017 Jun; 17(6):. PubMed ID: 28207187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Culturing C2C12 myotubes on micromolded gelatin hydrogels accelerates myotube maturation.
    Denes LT; Riley LA; Mijares JR; Arboleda JD; McKee K; Esser KA; Wang ET
    Skelet Muscle; 2019 Jun; 9(1):17. PubMed ID: 31174599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D anisotropic conductive fibers electrically stimulated myogenesis.
    Zhang Y; Le Friec A; Chen M
    Int J Pharm; 2021 Sep; 606():120841. PubMed ID: 34216768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication.
    Ahadian S; Ramón-Azcón J; Estili M; Liang X; Ostrovidov S; Shiku H; Ramalingam M; Nakajima K; Sakka Y; Bae H; Matsue T; Khademhosseini A
    Sci Rep; 2014 Mar; 4():4271. PubMed ID: 24642903
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Elomaa L; Lindner M; Leben R; Niesner R; Weinhart M
    Biofabrication; 2022 Oct; 15(1):. PubMed ID: 36300786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering.
    Hammer J; Han LH; Tong X; Yang F
    Tissue Eng Part C Methods; 2014 Feb; 20(2):169-76. PubMed ID: 23745610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue.
    García-Lizarribar A; Fernández-Garibay X; Velasco-Mallorquí F; Castaño AG; Samitier J; Ramon-Azcon J
    Macromol Biosci; 2018 Oct; 18(10):e1800167. PubMed ID: 30156756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human Neural Tissue Construct Fabrication Based on Scaffold-Free Tissue Engineering.
    Takahashi H; Itoga K; Shimizu T; Yamato M; Okano T
    Adv Healthc Mater; 2016 Aug; 5(15):1931-8. PubMed ID: 27331769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds.
    Chen S; Nakamoto T; Kawazoe N; Chen G
    Biomaterials; 2015 Dec; 73():23-31. PubMed ID: 26398306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and characterization of site selective photo-crosslinkable glycidyl methacrylate functionalized gelatin-based 3D hydrogel scaffold for liver tissue engineering.
    Sk MM; Das P; Panwar A; Tan LP
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111694. PubMed ID: 33812568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of Temperature-Responsive Cell Culture Surfaces for Cell Sheet-Based Regenerative Therapy and 3D Tissue Fabrication.
    Kobayashi J; Akiyama Y; Yamato M; Shimizu T; Okano T
    Adv Exp Med Biol; 2018; 1078():371-393. PubMed ID: 30357633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy.
    Wu Y; Wang L; Guo B; Ma PX
    ACS Nano; 2017 Jun; 11(6):5646-5659. PubMed ID: 28590127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple and scalable 3D printing methodology for generating aligned and extended human and murine skeletal muscle tissues.
    Cakal SD; Radeke C; Alcala JF; Ellman DG; Butdayev S; Andersen DC; Calloe K; Lind JU
    Biomed Mater; 2022 May; 17(4):. PubMed ID: 35483352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tubular Silk Fibroin/Gelatin-Tyramine Hydrogel with Controllable Layer Structure and Its Potential Application for Tissue Engineering.
    Xu S; Li Q; Pan H; Dai Q; Feng Q; Yu C; Zhang X; Liang Z; Dong H; Cao X
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6896-6905. PubMed ID: 33320592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropic cell sheets for constructing three-dimensional tissue with well-organized cell orientation.
    Takahashi H; Nakayama M; Shimizu T; Yamato M; Okano T
    Biomaterials; 2011 Dec; 32(34):8830-8. PubMed ID: 21864898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patterning of Structurally Anisotropic Composite Hydrogel Sheets.
    Prince E; Alizadehgiashi M; Campbell M; Khuu N; Albulescu A; De France K; Ratkov D; Li Y; Hoare T; Kumacheva E
    Biomacromolecules; 2018 Apr; 19(4):1276-1284. PubMed ID: 29505709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple method to align cells on 3D hydrogels using 3D printed molds.
    Vo J; Mastoor Y; Mathieu PS; Clyne AM
    Biomed Eng Adv; 2021 Jun; 1():. PubMed ID: 35663509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats.
    Jwo SC; Chiu CH; Tang SJ; Hsieh MF
    Biomed Mater; 2013 Dec; 8(6):065002. PubMed ID: 24225182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control.
    McMurtrey RJ
    J Neural Eng; 2014 Dec; 11(6):066009. PubMed ID: 25358624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.