BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32105934)

  • 1. Sulfidation enhances stability and mobility of carboxymethyl cellulose stabilized nanoscale zero-valent iron in saturated porous media.
    Gong L; Shi S; Lv N; Xu W; Ye Z; Gao B; O'Carroll DM; He F
    Sci Total Environ; 2020 May; 718():137427. PubMed ID: 32105934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of nanoscale zero-valent iron in saturated porous media: Effects of grain size, surface metal oxides, and sulfidation.
    Chen B; Lv N; Xu W; Gong L; Sun T; Liang L; Gao B; He F
    Chemosphere; 2023 Feb; 313():137512. PubMed ID: 36495971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong influence of degree of substitution on carboxymethyl cellulose stabilized sulfidated nanoscale zero-valent iron.
    Li T; Gao C; Wang W; Teng Y; Li X; Wang H
    J Hazard Mater; 2022 Mar; 425():128057. PubMed ID: 34910998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of polymer stabilized nano-scale zero-valent iron in porous media.
    Mondal PK; Furbacher PD; Cui Z; Krol MM; Sleep BE
    J Contam Hydrol; 2018 May; 212():65-77. PubMed ID: 29223368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carboxymethyl cellulose stabilization induced changes in particle characteristics and dechlorination efficiency of sulfidated nanoscale zero-valent iron.
    Gong L; Ying S; Xia C; Pan K; He F
    Chemosphere; 2024 May; 355():141726. PubMed ID: 38521105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the modification sequence on the reactivity, electron selectivity, and mobility of sulfidated and CMC-stabilized nanoscale zerovalent iron.
    Kong X; Xuan L; Fu Y; Yuan F; Qin C
    Sci Total Environ; 2021 Nov; 793():148487. PubMed ID: 34166902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media.
    Raychoudhury T; Tufenkji N; Ghoshal S
    Water Res; 2014 Mar; 50():80-9. PubMed ID: 24361705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability and Dynamic Aggregation of Bare and Stabilized Zero-Valent Iron Nanoparticles under Variable Solution Chemistry.
    Ibrahim HM; Awad M; Al-Farraj AS; Al-Turki AM
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 31978987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.
    Busch J; Meißner T; Potthoff A; Oswald SE
    J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate and transport of sulfidated nano zerovalent iron (S-nZVI): A field study.
    Nunez Garcia A; Boparai HK; de Boer CV; Chowdhury AIA; Kocur CMD; Austrins LM; Herrera J; O'Carroll DM
    Water Res; 2020 Mar; 170():115319. PubMed ID: 31790885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.
    Laumann S; Micić V; Hofmann T
    Water Res; 2014 Mar; 50():70-9. PubMed ID: 24361704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of multiple injections on the transport of CMC-nZVI in saturated sand columns.
    Wu W; Han L; Nie X; Gu M; Li J; Chen M
    Sci Total Environ; 2021 Aug; 784():147160. PubMed ID: 33901948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Naja G; Ghoshal S
    J Contam Hydrol; 2010 Nov; 118(3-4):143-51. PubMed ID: 20937540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subsurface transport of carboxymethyl cellulose (CMC)-stabilized nanoscale zero valent iron (nZVI): Numerical and statistical analysis.
    Asad MA; Khan UT; Krol MM
    J Contam Hydrol; 2021 Dec; 243():103870. PubMed ID: 34418819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Tufenkji N; Ghoshal S
    Water Res; 2012 Apr; 46(6):1735-44. PubMed ID: 22244967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron.
    Dong H; Xie Y; Zeng G; Tang L; Liang J; He Q; Zhao F; Zeng Y; Wu Y
    Chemosphere; 2016 Feb; 144():1682-9. PubMed ID: 26519799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the transport of the aggregates of nanoscale zerovalent iron under vertical and horizontal flow.
    Li J; Ghoshal S
    Chemosphere; 2016 Feb; 144():1398-407. PubMed ID: 26498094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TEMPO oxidized cellulose nanocrystal (TOCNC) scaffolded nanoscale zero-valent iron (nZVI) for enhanced chromium removal.
    Hu X; Song M; Li S; Chu Y; Zhang WX; Deng Z
    Chemosphere; 2023 Dec; 343():140212. PubMed ID: 37742762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media.
    Lin YH; Tseng HH; Wey MY; Lin MD
    Sci Total Environ; 2010 Apr; 408(10):2260-7. PubMed ID: 20163828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of nZVI stability on mobility in porous media.
    Kocur CM; O'Carroll DM; Sleep BE
    J Contam Hydrol; 2013 Feb; 145():17-25. PubMed ID: 23261906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.