These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32106253)

  • 41. Cryptococcus neoformans Evades Pulmonary Immunity by Modulating Xylose Precursor Transport.
    Li LX; Hole CR; Rangel-Moreno J; Khader SA; Doering TL
    Infect Immun; 2020 Jul; 88(8):. PubMed ID: 32423915
    [No Abstract]   [Full Text] [Related]  

  • 42. Loss of the scavenger receptor MARCO results in uncontrolled vomocytosis of fungi from macrophages.
    Onyishi CU; Jeon Y; Fejer G; Mukhopadhyay S; Gordon S; May RC
    Eur J Immunol; 2024 Jun; 54(6):e2350771. PubMed ID: 38494423
    [TBL] [Abstract][Full Text] [Related]  

  • 43. First report of two cases of cryptococcosis in Tripoli, Libya, infected with Cryptococcus neoformans isolates present in the urban area.
    Ellabib MS; Krema ZA; Allafi AA; Cogliati M
    J Mycol Med; 2017 Sep; 27(3):421-424. PubMed ID: 28576330
    [TBL] [Abstract][Full Text] [Related]  

  • 44. IL-25 Receptor Signaling Modulates Host Defense against
    Hansakon A; Jeerawattanawart S; Pattanapanyasat K; Angkasekwinai P
    J Immunol; 2020 Aug; 205(3):674-685. PubMed ID: 32561567
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interferon-γ promotes phagocytosis of Cryptococcus neoformans but not Cryptococcus gattii by murine macrophages.
    Ikeda-Dantsuji Y; Ohno H; Tanabe K; Umeyama T; Ueno K; Nagi M; Yamagoe S; Kinjo Y; Miyazaki Y
    J Infect Chemother; 2015 Dec; 21(12):831-6. PubMed ID: 26477011
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contribution of Laccase Expression to Immune Response against Cryptococcus gattii Infection.
    Hansakon A; Ngamskulrungroj P; Angkasekwinai P
    Infect Immun; 2020 Feb; 88(3):. PubMed ID: 31871099
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fbp1-mediated ubiquitin-proteasome pathway controls Cryptococcus neoformans virulence by regulating fungal intracellular growth in macrophages.
    Liu TB; Xue C
    Infect Immun; 2014 Feb; 82(2):557-68. PubMed ID: 24478071
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vomocytosis: Too Much Booze, Base, or Calcium?
    Cruz-Acuña M; Pacifici N; Lewis JS
    mBio; 2019 Dec; 10(6):. PubMed ID: 31874916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The outcome of Cryptococcus neoformans intracellular pathogenesis in human monocytes.
    Alvarez M; Burn T; Luo Y; Pirofski LA; Casadevall A
    BMC Microbiol; 2009 Mar; 9():51. PubMed ID: 19265539
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cryptococcosis Serotypes Impact Outcome and Provide Evidence of Cryptococcus neoformans Speciation.
    Desnos-Ollivier M; Patel S; Raoux-Barbot D; Heitman J; Dromer F;
    mBio; 2015 Jun; 6(3):e00311. PubMed ID: 26060271
    [TBL] [Abstract][Full Text] [Related]  

  • 51.
    Watkins RA; Andrews A; Wynn C; Barisch C; King JS; Johnston SA
    Front Cell Infect Microbiol; 2018; 8():108. PubMed ID: 29686972
    [No Abstract]   [Full Text] [Related]  

  • 52. Dynamics of Cryptococcus neoformans-macrophage interactions reveal that fungal background influences outcome during cryptococcal meningoencephalitis in humans.
    Alanio A; Desnos-Ollivier M; Dromer F
    mBio; 2011; 2(4):. PubMed ID: 21828220
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cryptococcus neoformans seropositivity and some haematological parameters in HIV seropositive subjects.
    Chukwuanukwu RC; Uchenna N; Mbagwu SI; Chukwuanukwu TO; Charles O
    J Infect Public Health; 2020 Jul; 13(7):1042-1046. PubMed ID: 31831399
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of macrophages in immunity and pathogenesis of experimental cryptococcosis induced by the airborne route--Part II: Phagocytosis and intracellular fate of Cryptococcus neoformans.
    Karaoui RM; Hall NK; Larsh HW
    Mykosen; 1977 Nov; 20(11):409-12. PubMed ID: 339078
    [No Abstract]   [Full Text] [Related]  

  • 55. The Membrane Phospholipid Binding Protein Annexin A2 Promotes Phagocytosis and Nonlytic Exocytosis of Cryptococcus neoformans and Impacts Survival in Fungal Infection.
    Stukes S; Coelho C; Rivera J; Jedlicka AE; Hajjar KA; Casadevall A
    J Immunol; 2016 Aug; 197(4):1252-61. PubMed ID: 27371724
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages.
    Alvarez M; Casadevall A
    BMC Immunol; 2007 Aug; 8():16. PubMed ID: 17705844
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cdk8 and Ssn801 Regulate Oxidative Stress Resistance and Virulence in Cryptococcus neoformans.
    Chang AL; Kang Y; Doering TL
    mBio; 2019 Feb; 10(1):. PubMed ID: 30755515
    [No Abstract]   [Full Text] [Related]  

  • 58. Cryptococcus neoformans host adaptation: toward biological evidence of dormancy.
    Alanio A; Vernel-Pauillac F; Sturny-Leclère A; Dromer F
    mBio; 2015 Mar; 6(2):. PubMed ID: 25827423
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection.
    Davis MJ; Tsang TM; Qiu Y; Dayrit JK; Freij JB; Huffnagle GB; Olszewski MA
    mBio; 2013 Jun; 4(3):e00264-13. PubMed ID: 23781069
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Virulence mechanisms and Cryptococcus neoformans pathogenesis.
    Alspaugh JA
    Fungal Genet Biol; 2015 May; 78():55-8. PubMed ID: 25256589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.