These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32106389)

  • 21. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors.
    Horikoshi S; Abe H; Torigoe K; Abe M; Serpone N
    Nanoscale; 2010 Aug; 2(8):1441-7. PubMed ID: 20820732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A versatile chemical vapor synthesis reactor for in situ x-ray scattering and spectroscopy.
    Schroer MA; Levish A; Yildizlar Y; Stepponat M; Winterer M
    Rev Sci Instrum; 2022 Nov; 93(11):113706. PubMed ID: 36461417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micromixer Synthesis Platform for a Tuneable Production of Magnetic Single-Core Iron Oxide Nanoparticles.
    Baki A; Löwa N; Remmo A; Wiekhorst F; Bleul R
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32942715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition.
    Hufschmid R; Arami H; Ferguson RM; Gonzales M; Teeman E; Brush LN; Browning ND; Krishnan KM
    Nanoscale; 2015 Jul; 7(25):11142-54. PubMed ID: 26059262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphology of Composite Fe@Au Submicron Particles, Produced with Ultrasonic Spray Pyrolysis and Potential for Synthesis of Fe@Au Core-Shell Particles.
    Majerič P; Feizpour D; Friedrich B; Jelen Ž; Anžel I; Rudolf R
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measuring the reactivity of commercially available zero-valent iron nanoparticles used for environmental remediation with iopromide.
    Schmid D; Micić V; Laumann S; Hofmann T
    J Contam Hydrol; 2015 Oct; 181():36-45. PubMed ID: 25708601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Droplet-based synthesis of homogeneous magnetic iron oxide nanoparticles.
    Ahrberg CD; Choi JW; Chung BG
    Beilstein J Nanotechnol; 2018; 9():2413-2420. PubMed ID: 30254836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Practical achievements on biomass steam gasification in a rotary tubular coiled-downdraft reactor.
    Andrew R; Gokak DT; Sharma P; Gupta S
    Waste Manag Res; 2016 Dec; 34(12):1268-1274. PubMed ID: 27495911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Macrofluidic Coaxial Flow Platforms to Produce Tunable Magnetite Nanoparticles: A Study of the Effect of Reaction Conditions and Biomineralisation Protein Mms6.
    Norfolk L; Rawlings AE; Bramble JP; Ward K; Francis N; Waller R; Bailey A; Staniland SS
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31817082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arsenic removal from water using flame-synthesized iron oxide nanoparticles with variable oxidation states.
    Abid AD; Kanematsu M; Young TM; Kennedy IM
    Aerosol Sci Technol; 2013 Feb; 47(2):169-176. PubMed ID: 23645964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single and Dual Surfactants Coated Hydrophilic Superparamagnetic Iron Oxide Nanoparticles for Magnetic Fluid Hyperthermia Applications.
    Sudame A; Kandasamy G; Maity D
    J Nanosci Nanotechnol; 2019 Jul; 19(7):3991-3999. PubMed ID: 30764960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous Polyol Synthesis of Metal and Metal Oxide Nanoparticles Using a Segmented Flow Tubular Reactor (SFTR).
    Testino A; Pilger F; Lucchini MA; Quinsaat JE; Stähli C; Bowen P
    Molecules; 2015 Jun; 20(6):10566-81. PubMed ID: 26060919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Earthicle: The Design of a Conceptually New Type of Particle.
    Uskoković V; Pernal S; Wu VM
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1305-1321. PubMed ID: 28009506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-Sensitive Aspects of Mars Sample Return (MSR) Science.
    Tosca NJ; Agee CB; Cockell CS; Glavin DP; Hutzler A; Marty B; McCubbin FM; Regberg AB; Velbel MA; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Pratt LM; Smith AL; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Wadhwa M; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S81-S111. PubMed ID: 34904889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystallization kinetics of cerium oxide nanoparticles formed by spontaneous, room-temperature hydrolysis of cerium(iv) ammonium nitrate in light and heavy water.
    Pettinger NW; Williams RE; Chen J; Kohler B
    Phys Chem Chem Phys; 2017 Feb; 19(5):3523-3531. PubMed ID: 28094375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gas-Directed Production of Noble Metal-Magnetic Heteronanostructures in Continuous Fashion: Application in Catalysis.
    Larrea A; Eguizabal A; Sebastián V
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43520-43532. PubMed ID: 31664814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atmospheric-Pressure Pulsed Discharge Plasma in a Slug Flow Reactor System for the Synthesis of Gold Nanoparticles.
    Yamada M; Wahyudiono ; Machmudah S; Kanda H; Zhao Y; Goto M
    ACS Omega; 2020 Jul; 5(28):17679-17685. PubMed ID: 32715254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of synthesis and peptization steps to obtain iron oxide nanoparticles with high energy dissipation rates.
    Mérida F; Chiu-Lam A; Bohórquez AC; Maldonado-Camargo L; Pérez ME; Pericchi L; Torres-Lugo M; Rinaldi C
    J Magn Magn Mater; 2015 Nov; 394():361-371. PubMed ID: 26273124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maghemite (γ-Fe
    Lemine OM; Madkhali N; Alshammari M; Algessair S; Gismelseed A; El Mir L; Hjiri M; Yousif AA; El-Boubbou K
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing.
    Epps RW; Felton KC; Coley CW; Abolhasani M
    Lab Chip; 2017 Nov; 17(23):4040-4047. PubMed ID: 29063081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.